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Introduction

Broadly speaking our work aimed to develop and assess the utility of various theoretical
and experimental diffuse light imaging schemes for tumor detection and characterization
within the human breast. During the last year we have theoretically and numerically
investigated the angular spectrum approach in the parallel plate (compressed breast)
geometry. On the experimental side we have built a soft compression plate apparatus for
diffuse optical tomography of the breast. The device was used to experimentally to test
the angular spectrum and other theoretical approaches. We have pilot tested the
instrument with tissue phantoms and in a few clinical scenarios. Through this work we
uncovered some technical limitations of diffuse optical tomography based on the angular
spectrum approach, and, importantly, we developed other schemes for improved breast
imaging.

Body
Below we have summarized our progress related to each of three specific aims outlined
for this grant.

Specific aim 1

To theoretically explore the utility of the FFT approach for breast tumor imaging with
diffusing light in the parallel plate compressed breast configuration.

During the last year we contributed 2 papers that developed diffraction tomographic
techniques for diffuse optical imaging. The first paper investigated the use of depth
dependent regularization and mathematical filtering methods to improve the fidelity of
these projection images in the presence of noise [1]. In This paper we developed an
algorithm that stabilized the diffraction tomographic deconvolution for optimal resolution
at all depths. In addition we found an empirical method to estimate the depth of a
heterogeneity of interest using only 2D projection images. In a related publication we
documented a group of refinements to the diffraction tomographic techniques [2]. These
improvements included incorporating boundary conditions in order to extend the
technique to slab media of finite size and to semi-infinite media. The modified theory
with better boundary conditions was demonstrated to be superior to the initial formulation
using numerical simulations plus noise. We also studied the cross-coupling of absorption
and scattering; an important finding of these numerical experiments was that cross-
coupling of absorption and scattering would arise in samples for which the thin slice
approximation breaks down. This finding suggested that 2D projection images alone will
not be sufficient to reconstruct true optical properties in many practical situations, and
that some form of 3D reconstruction is critical.

Specific aim 2

To construct an apparatus based on photon migration technology that will enable us to
test image reconstruction approaches with realistic conditions and signal to noise ratios.
We have made substantial progress in instrumentation development during the last year.
There were several important issues to be faced as we began this project. Since the focus
of the grant was on the FFT approach, we designed a compressed breast instrument for
which it was possible to rigorously test these theoretical schemes. At the same time




however, we wanted to design an apparatus that would be adaptable to other theoretical
and experimental approaches that we hoped to investigate.

So far we have primarily been using the frequency domain version of the apparatus to
measure the optical properties of tissue phantoms and of normal breast [3]. At the heart of
the device are two parallel compression plates (e.g. a “source-plate” and an “output-
plate”) with adjustable separation. The original version of the source plate had one
source fiber coupled in series to 3 amplitude modulated (140MHz) diode lasers operating
at 3 wavelengths in the NIR (750nm, 786nm, and 830nm). The original version of the
detection plate had a scannable detection fiber. Typically we would scan the fiber over
an ~10x10cm area in steps of 0.5 cm, which required about 20 minutes

We used the original device to demonstrate the basic ideas of the angular spectrum
approach, and also to show the limitations of the approach experimentally in tissue
phantoms. We also used the device in pilot measurements of the average optical
properties of normal human breast. In carrying out these latter studies we obtained a
better understanding of some of the clinical problems that will arise in practice. For
example, proper treatment of the chest boundary was critical for obtaining correction
optical properties. It also became apparent that one needed to obtain a larger data sets,
more quickly (i.e. than 20 minutes) in order to push the methodology effectively into the
clinic, and to carry out realistic 3D image reconstructions. In this vein we have designed
and started building a second-generation optical mammography device that employs a
CCD camera that rapidly collects large data sets [4].

Specific aim 3
To theoretically formulate and demonstrate non-perturbative approaches to homogenous
and heterogenous media that explicitly incorporates the boundary conditions and that is
accurate when variations in scattering and absorption are large (i.e. not in the
perturbative limit).
In a this vein we derived a new integro-differential equation for bounded media within
the diffusion approximation (also following the principles of diffraction tomography)
which readily makes possible full 3D reconstructions in the compressed breast geometry
[5]. The new technique employs a series of plane diffuse photon density waves with
different modulation frequencies. It requires both two-dimensional FFT operations (as in
the original approach) and a one-dimensional matrix inversion.

In addition we developed finite difference numerical codes for data inversion.
This approach was utilized to obtain measurements of the bulk optical properties of tissue
phantoms and normal breast using the apparatus developed in specific aim 2. During the
course of analyzing the results of clinical measurements it became apparent that our
analytical schemes were suffering in practical scenarios. As a result we developed finite
difference numerical codes for data inversion. These numerical schemes can flexibly
segment and extend the regions of interest. In particular we have been using the explicit
adjoint formulation for the inverse problem. Most DOT approaches have been
implemented in 2D. In the best 2D cases, researchers have employed a cylindrical
geometry to reduce the dimensionality of the problem. In fact, only recently have a few
direct comparisons between full 3D and 2D reconstructions been made using simulated
data; not surprisingly the 3D reconstructions were superior. Furthermore in any clinical
setting the forward problem is necessarily 3D. This is especially true for our compressed




plate geometry where there is no intrinsic symmetry about which to reduce the
dimensionality of the problem. A description of these numerical schemes is provided [6].

Key Research Accomplishments

Developed an algorithm that stabilized the diffraction tomographic technique for
optimal resolution at all depths.

Found an empirical method to estimate the depth of a heterogeneity of interest using
only 2D projection images.

Incorporated boundary conditions into the diffraction tomography approach in order
to extend the technique to slab media of finite size and to semi-infinite media.
Derived a new integro-differential equation for bounded media within the diffusion
approximation (also following the principles of diffraction tomography), which
readily makes possible full 3D reconstructions in the compressed breast geometry.
Demonstrate the basic ideas and tested the limitations of the angular spectrum
approach using clinical prototype imager.

Designed and started building a second-generation optical mammography device
employing a CCD camera to rapidly collects large data sets.

Developed finite difference numerical codes for data inversion.

Reportable outcomes

Grant: Parallel, Rapid Diffuse Optical Tomography of Breast

Grant: Parallel Detection and Computation for Diffuse Tomography of Breast
Durduran, T., Culver, J.P., Hoboke, M.J., Li, X.D., Zubkov, L., Chance, B.,
Pattanayak, D.N., and Yodh, A.G., Algorithms for 3D localization and imaging using
near-field diffraction tomography with diffuse light, Optics Express 4, 247-262
(1999).

Li, X.D., Pattanayak, D.N., Durduran, T., Culver, J.P., Chance, B., and Yodh, A.G,,
Near-field diffraction tomography with diffuse photon density waves, (Accepted by
Physical Review B) (2000).

Durduran, T., Holboke, M., Culver, J.P., Zubkov, L., Choe, R., Pattanayak, D.N.,
Chance, B., and Yodh, A.G., Tissue bulk optical properties of breasts and phantoms
obtained with clinical optical imager (To be published, Technical Digest Biomedical
Topical Meeting, OSA) (2000).

Culver, J.P., Ntziachristos, V., Zubkov, L., Durduran, T., Pattanayak, D.N., and
Yodh, A.G., Data set size and image quality in diffuse optical mammography:
evaluation of a clinical prototype (To be published, Technical Digest Biomedical
Topical Meeting, OSA) (2000).

Pattanayak, D.N., and Yodh, A.G., Diffuse optical 3D-slice imaging of bounded
turbid media using a new integro-differential equation, Optics Express 4, 231-240
(1999).

Holboke, M.J. and Yodh, A.G., Parallel three-dimensional diffuse optical tomography
(To be published, Technical Digest Biomedical Topical Meeting, OSA) (2000).

Conclusions

In our work over the last year we developed and assessed the utility of various theoretical
and experimental diffuse light imaging schemes for tumor detection and characterization




within the human breast. Focusing on the parallel plate (compressed breast) geometry, we
have theoretically and numerically investigated the angular spectrum approach.
Significant progress was made in stablizing the techinque with respect to measurement
noise and extending the technique to clinically relevant geometries. Through this work
we uncovered some technical limitations of diffuse optical tomography based on the
angular spectrum approach, and, importantly, we developed other schemes for improved
breast imaging. In particular we have derived a new integro-differential equation for
bounded media within the diffusion approximation and developed finite difference
numerical codes for arbitrary geometries.

On the experimental side we have built a soft compression plate apparatus for diffuse
optical tomography of the breast and conducted pilot tests of the instrument with tissue
phantoms and in a few clinical scenarios. While using the current system for bulk tissue
properties it became obvious that the data acquisition speed needed to be increase
significantly. As a result we designed and began building a second-generation
mammography machine using a CCD camera. The larger data sets will be complemented
by future efforts to develop parallel processor image reconstruction code.

In conclusion we have gained significant knowledge and experience with the optical
mammography problem during this period. As a result of this understanding, we have
designed and started the development of novel computational and experimental tools that
permit rapid acquisition and analysis of informationally dense diffuse optical data sets in
the compressed breast geometry.
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Abstract: We introduce two filtering methods for near-field diffuse
light diffraction tomography based on the angular spectrum represen-
tation. We then combine these filtering techniques with a new method
to find the approximate depth of the image heterogeneities. Taken to-
gether these ideas improve the fidelity of our projection image recon-
structions, provide an interesting three dimensional rendering of the
reconstructed volume, and enable us to identify and classify image ar-
tifacts that need to be controlled better for tissue applications. The
analysis is accomplished using data derived from numerical finite dif-

ference simulations with added noise.

©1999 Optical Society of America

OCIS codes: (170.3010) Image reconstruction techniques;(170.5280) photon mi-
gration; (170.3830) mammography; (170.5270) Photon density waves; (170.3660)
Light propagation in tissues
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1. Introduction

Diffuse photon density waves (DPDWs) [1-7] and their time-domain analogs {8-10]
can provide quantitative spectroscopic information about tissue structure, tissue chro-
mophores, and tissue metabolism. Tomographic imaging of deep tissues with diffusive
waves offers the possibility for functional imaging based on these spectroscopic con-
trasts. Thus image reconstruction has been explored intensely with varying degrees of
success in tissue phantoms [11,12], the brain [13-18], and the breast [19-24]. One theo-
retical approach that has received significant recent interest is the method of diffraction
tomography [25-28] extended to the near-field [29-43]. This scheme is particularly well
suited for planar source-detection geometries that arise for example, in breast imaging.
The methodology has attracted attention [29-43] because the diffusive wave modes de-
rived using the angular-spectrum representation provide a very convenient framework
for imaging in parallel-plate geometries, and for analytic or semi-analytic investigation
of resolution and signal-to-noise issues. The method also offers a very fast and direct
way to obtain two-dimensional projection images of the turbid media; these images are
essentially optical mammograms|21].

In this contribution we study a set of theoretical issues associated with image
reconstruction using near-field diffraction tomography. In order to obtain quality im-
ages, for example, one apply spectral filters [41-46] to the data at several levels of the
image processing (i.e. filters with respect to spatial frequencies in the reconstructions).
Well defined rules do not exist for choosing these filter functions; in fact different filter
functions introduce uncontrolled systematic errors into the images [41] . Additionally,
the images are dramatically improved when the experimenter has knowledge of the ap-
proximate depth of the optical heterogeneity. Object depth determination is generally
difficult unless one has other means to obtain this information such as multiple optical
views of the same sample or image segmentation from other types of diagnostics.

We investigate both critical issues in this paper, and demonstrate algorithms
for optimizing projection image fidelity. Data for these studies is derived from numerical
simulations with added noise. Two kinds of mathematical filters are introduced; (1) a
phase-only filter which does not have any free parameters and allows accurate localiza-
tion, and (2) a depth and noise dependent low-pass filter with the cut-off frequency as
a free parameter. Then the two filtering methods are combined with a technique to find
the approximate depth of the heterogeneities. We obtain two dimensional projection
images and we demonstrate a three dimensional rendering of these image projections
which appears promising for clinical applications. Our work clarifies the mentioned is-
sues in a quantitative way; it makes apparent the limitations of the technique, identifies
artifacts and directions for improvement.

2. Theory
2.1  Angular spectrum representation of diffuse photon density waves

The angular-spectrum representation provides a set of modes well suited for the descrip-
tion of the propagation and scattering of diffuse photon density waves in parallel-plate
geometries (fig.(1)). The representation and its applications have been described by
numerous investigators in optics [25-28,47-48] and in the photon migration community
[29-43]. For clarity we review the salient features of this approach below. We assume
infinite space boundary conditions in this discussion; Green’s functions for semi-infinite
and slab geometries have been reported in the literature [33-35] and do not qualitatively
change the conclusions presented herein. The starting point for our treatment is the for-
mal expression relating the scattered diffuse light field, ®;. , to a volume integral over
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heterogeneities within the entire turbid medium [33]:

O (1) :/ T(r')Go(r,v')d*r" . (1)
v
Z()
Tumor (Xa:Ya,2a)
@
Source
- Breast Detector
0,0,0) \/ Scans
- in a plane
Intralipid

Figure 1.  The generic near-field diffraction tomography experiment. The detector
is scanned in a 2D grid on the surface of the plane parallel to and displaced from
the plane containing the source. The breast is embedded in the box along with
Intralipid in order to match its average optical properties.

Here T'(r') is “tumor” function at position r’ which, in the Born Approximation,
depends on the background diffuse photon density wave, ®o(r), as well as the absorption
(01 (r")) and scattering (6u%(r’) ) deviations from the medium’s background absorption
(pao ) and scattering coefficients (uf, ) respectively. T'(r) also depends on the speed
of light in the medium, v, the background light diffusion constant Do, the background
diffuse photon density wavevector ko = \/ (~vpe0 +w)/Dp) , and the modulation fre-
quency, w. It can be conveniently separated into absorptive and scattering parts [49],
ie.,

Tabs(r) - _l—;}'(;él)(r)(sﬂa (I’) ’ (2)
7o) = L) 3)

Here we drop the gradient terms due to the scattering variations for simplicity. This
approximation is described in detail in [49]. Go(r,r’) is the usual Green’s function for
the medium of the form:

exp(iko|r — r'|)
dnlr —1'|

Go(r,r') = (4)

Typical experiments that employ the angular-spectrum representation for anal-
ysis use a “parallel-plate” geometry (e.g. fig.(1)) where the detected DPDW, &(r) =
®,.(r) +Po(r) , is measured at discrete points within a square grid on the planar output
(detector plane, (z,y, zq4)) surface. We take our source (at the origin, (0,0,0)) to be a
point emitter on the planar input surface (source plane, (zs,¥s,0) ). In this geometry
the Green’s function is conveniently written in the following form:

Go(r,r') = //dpdqéo(p, q, zd’Z’)e—i(p(mu—w')ﬂ(w—y’)) , (5)
where the z-axis is defined in the direction normal to the plane surfaces, and (p,q) are

the 2D spatial (k-space) frequencies conjugate to the z- and y-coordinates. The angular
spectrum (Weyl expansion) representation of the Green’s function is [31,50]

) C
Golp. g 20,7) = e (6)
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where m = 1/k2 — (p? + ¢?) is the complex propagator wavenumber and the imaginary
part of m is positive, i.e. §(m) > 0. With these definitions, the 2D Fourier Transform
of the scattered field in the detection plane is simply [33]

ésc(p7 q, Zd) - /dz,é()(pa q, zd,z')T(p,q,z) . (7)

where hat (") indicates quantities in k-space. This equation is the fundamental equation
for diffraction tomography.

2.2 Image reconstruction

Equation (7) relates the tumor function in each slice to the 2D Fourier Transform of the
scattered DPDW in the detection plane. Rather than inverting the Laplace Transform
directly, we discretize the integral into a sum over slices of thickness Az, i.e

N
1Az -
e(P, 9, 2a) Z o(p 0,20, 2 )T (p, 0, 23) = %‘T(P, g, 2;)e™ =) - (8)
=1 =

Az is the step size in the z-direction and N = z4/Az is the total number of slices. This
is the key equation for our image reconstruction using the angular-spectrum approach.
There are a number of possible ways to solve this problem in 3D [36,40], but from this
point onwards we focus on projection images and a 3D variant thereof.

For two dimensional projection images in the x-y planes along the depth direc-
tion (z), we assume that the inhomogeneities are isolated and thin, and we drop the
sum. That is, we take the tumor function to be zero everywhere except at the phantom
(object) depth. Thus a measurement, Fourier transform, and a simple division in the
k-space yields the tumor function, i.e

Qsc(py q; Zd) (9)

T(P q, Zobj) = = )
, AZGO(p:Q>ZdaZObj)

where the subscript “obj” indicates the phantom coordinates.
The inverse Fourier transform of this quantity enables us to solve for absorption
and scattering variations. Using

—127r (pz '+qy’) . , ,
T(z', 9, Zob) // pdg // dodye™ P+ )G (2,9, 24) , (10)
A2G(p, q, Zobs, 2)

we can solve eq. (2) and (3) to get duq(r) and éul(r). Note that we need to know the
background field at the object depth to accurately to obtain optical properties. Fig.(2)is
a flowchart illustrating the algorithm described above.
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v

Loop Until Last Plane, increase z’

A 4
Done looping, display 3D

Figure 2.  Simplified flow diagram of the image reconstruction algorithm. Dotted
lines are used for optional steps. Brown and blue indicate real-m filtering, green
indicates G-filtering steps.

The relevant clinical situation is shown in fig.(1). The breast is embedded in a
slab-like box filled with matching material such as Intralipid. The optical properties of
Intralipid are chosen to be close to the average optical properties of the breast. Illumi-
nation comes from one plane, and the detectors are scanned in a grid on the opposite
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0.01

plane. The amplitude and phase of the DPSW's with and without the breast are meas-
ured and used to obtain the scattered DPDW. In our experiments [21,33,41] we also use
multiple optical wavelengths to obtain spectroscopic information{41]. The background
field at different depths is not measured and must be estimated using numerical models
or a backpropagation technique [25,51]. This is the main difficulty for obtaining 3D
information in clinical situations and we are investigating various methods to overcome
this problem [33,34].

2.3  Noise amplification at high spatial frequencies

In eq.(9) we divide two waves with complex wavenumbers (m and ko). The scattered field
generally suffers from noise; the origin of this noise can be experimental, numerical, or
due to finite sampling. The noise in the high spatial frequencies is preferentially amplified
by the deconvolution because the Green’s function in the denominator of equation (9)
decays to zero faster for higher values of p and ¢. The amplification of the high frequency
noise and the associated instabilities are common problems associated with Fourier
convolution approaches to image reconstruction [25-28,44-46]. Fig.(3) demonstrates this
problem.

.01

0.005

'I(Ix s x([) g ,lzd N ) 8 7 N 10 - " i
4px10 1T(p,q,2)! ¢ g %10 IT(p.g.2)1
3 . . 6 .
2 - . 4 .
! “ N of o N
° 2 10 o 10 20 PO 0 -~ - pEm!) o LS pat?’. g
K - 20 10 0 10 20 20 10 ° 10 20 plem™)

(a) (b) (©)

Figure 3. (a)Amplitude of the scattered wave as a function of p for a fixed g
and (b) amplitude of the tumor function plotted in the k-space for noiseless (only
numerical noise) and (c) noise-added data from the single object (sec. 5.1) . The
maximum frequency, |p| == 7/Az. The rising “wings” on the sides are due to noise.
The noise effects are amplified by ~ 103 relative to the noiseless case at large p.

One [37,38,41] way of dealing with this problem is to apply a low-pass spatial
filter in order to suppress the high frequency components of the tumor function. The
quantitative effects of this cut are not known however [41,45,46]. Furthermore, the spa-
tial resolution of the images depend on the highest k-space frequencies available and
therefore filtering modifies image resolution (see eq.(12))[31,41,43,44].

3. Filtering and normalization for improving depth information / image
quality

We have investigated filtering and normalization techniques which provide different
types of information and lead to the improvement of image quality within the context
of projection imaging. In particular we have found a robust method which enables
the experimenter to estimate the approximate depth of the heterogeneities below the
detection plane; the method does not require more data, yet offers a prescription for
extending the 2D projection approach to quasi-3D imaging and localization. In this
section we briefly outline three techniques to optimize image reconstruction. In the
remainder of the paper we demonstrate their utility. For simplicity we focus entirely on
absorption heterogeneities.
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3.1  Phase only Green's function (real-m filter)

We have found a very crude filtering technique that gives fairly accurate positional
information in two- and even three-dimensional images. In essence the method is based
on the hypothesis that most of the positional information is contained in the phase of our
signals in k-space. In this procedure we modlfy the Green’s function,Go(p, ¢, z4, 7'); in
particular we put Go(p, q,z4,2') = ~ jeif(m)za=='] We set its amplitude to unity, so only
phase information in the Green’s function is used for the reconstruction. We also apply
a Blackman Window on 7' (see [43] for its properties) which is a standard windowing
function used in the Fourier domain to further stabilise the image. This last step is used
for better image quality and is not an essential part of the algorithm. Calculation of
the projection image proceeds along similar lines except for these steps (see fig. (2)).
Although quantitative information about optical properties is largely lost, the real-m
filter has no free parameters (except from the optional windowing function) and provides
superior information about the xyz central coordinates of heterogeneities.

3.2 Depth estimation (S;)

We have empirically found [52] that the following set of operations applied to the pro-
jection images obtained with the real-m filter enable us to accurately estimate the het-
erogeneity depth below the detection surface. Briefly, we first obtain the tumor function
for each slice (centered on some z;) using the real-m filter. We then derive an image of
Suta(,y, z;) for each slice, determine the center position of the object we are trying to
characterize, and record the absorption variation at the object central position. Finally
we compute the quantity

S — [6pa = 6/-la| . (11)
\/Zmy(éllaxy — 0pa)?

where the sum in the denominator is over all pixels in the image slice. 6y, is the mean
Sppacy in the j** plane. S; is in essence a measure of the contrast of the object in the
4t plane. We empirically found that the value of z; for which S is 2 maximum closely
approximates the actual depth of the object (zo;). This procedure enables us to select
a slice for the projection image and, thus provides a scheme for extending images to
three dimensions (see section 5.1 .1).

3.8  High frequency filtering based on depth and ezperimental noise floor (G-filtering)

After we have obtained this rough picture of the object in the turbid medium, we repeat
the entire procedure using the true Green’s function. From our discussion in section 2.3
however, it is apparent that we need to devise a scheme to select the spatial frequencies
for reconstruction. We carry out this procedure in a straightforward way. Note that
it is critical for this procedure that the scattered waves are normalized by the source
strength. For our convenience we used a source strength of one photon per unit volume
per unit time. We first plot the raw data to determine the experimental noise level. For
example by plotting d,. vs. p and ¢ (e.g. fig.(3)) we will find at sufficiently high p and
q, that d,. hits a “white” noise floor; the ratio of the signal amplitude at p = ¢ = 0 to
the signal amplitude at these high frequencies provides a measure of the experimental
signal-to-noise. Next we insert the estimated object depth 2’ = zop; into the expression
for Gy (p,q, 24, 2") , and we determine at what value of m, Golp, g, 24, Zobj) drops below a
threshold based on our experimental S/N. In practice we set this threshold to be about
five times the white noise floor. We set 7' = 0 for all m greater than this threshold (see
fig (2) for the occurance of this step in the general algorithm.). The result is a depth
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dependent pillbox filter applied to the tumor function. The rest of the reconstruction
is the same. The combination technique offers the possibility of improvement in the
accuracy of optical properties and better images.

At this point it may also be desirable to recompute S; using reconstructions
based on the G-filter technique. Usually the maximum S; determined with the G-filter
is within ~1 ¢m of the maximum S; determined using the real-m filter (see section 8.1
). In applying this latter procedure the high frequency cut-off depends on depth (2z5).

4. Data generation

Our “data” was derived from numerical simulations. In particular the finite difference
method with partial current boundary conditions was used to solve the diffusion equa-
tion for arbitrary interior inhomogeneities. The program is capable of simulating the
forward problem in a box geometry. We used a point source with a strength of one
photon per unit volume per unit time; this choice of source term eliminated the need to
normalize the scattered wave when computing the noise floor and comparing the thresh-
old to the Green’s function. The source was modulated at 140Mhz. For the purposes of
this paper we simulate data in a 20x20x20cm box and use the central 9x9x5cm region
for “experiments”. The region is far from all boundaries and is a very good approxima-
tion to the infinite medium. The region created from the simulation is a 65 by 65 by 36
grid in x, y and z with the coordinates respectively, running from -4.5 to 4.5c¢cm in x &
y and 0 to 5 cm in z directions. The step size is 0.14cm corresponding to a voxel size
of (0.14cm)®. The geometry chosen closely mimics our clinical set-up [34,41]. We use
a high number of pixels in the numerical simulation to avoid truncation errors. Each
point of the detection grid is centered in the squares of the same 65x65 region in the
detector plane at z; = z4 = Scm.

Optical properties can be assigned to each pixel independently so that we are
able to simulate heterogeneities of arbitrary shape. We use thin rectangular slices (i.e
thin in z-direction) for objects. Thin slices insure that our projection approximation is
reasonable. Figs. (4) and (8) provide 3D renderings of the input phantoms.

Noise is added to the data using a random number generator with a normal
distribution of variance one and mean zero. The approach is tuned to provide gaussian
noise with variance 0.5% for the amplitude and variance of 0.05° for the phase. These
probably overestimate our experimental noise. Noise is added to heterogeneous and
homogeneous measurements. Figs.(4) and (12) show the amplitude of the noiseless and
noisy scattered fields obtained in Born approximation.

5. Results
5.1  Tissue phantoms with single slice heterogeneity

The simulated heterogeneity is shown in fig.(4). It has dimensions 1.4x 1.4 x 0.28 ¢cm in
x,y and z directions respectively. The optical properties are pq = 0.1 em~! and pl =8
cm~! . The background optical properties are g, = 0.02 cm™! and p}, = 8 cm™%.
The phantom is centered at a depth of 2.65cm from the source plane. It’s transverse
location centers on y=x=1.97cm. The amplitude of the “measured” scattered field at
the detector plane is shown in its noiseless and noisy versions in fig.(4) for comparison.
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Figure 4.  Single Slice Phantom: Left figure shows a 3D rendering of the phantom.
Gray region has background properties. The detector plane is assumed to be at
z=5cm and the source is at the origin in z=0cm plane. Amplitude of the scattered
field in the detector plane for the phantom shown in the middle (noiseless) and right

(noise added) figures.

5.1 .1 Real-m imaging

We now employ the real-m filter scheme described in section 3.7 on the single object
data shown above. Figs.(5a) and (5b) show two dimensional projection images at depths
z=2.42cm and z=3.24cm respectively. We see that the object is clearly apparent. In fig.
(5¢), we plot S; vs z;; we see that the contrast parameter is peaked at z; = 2.71lcm,
and we use this value to make a “true” real-m filter reconstruction of the data which is
shown in fig.(5d). This result is representative of all of the single-object phantoms that

we tested.

Figure 5. (a) and (b) projections at z=2.42, z=3.28 respectively, (c) S; vs z;
(cm) through the transverse center, peaks at z=2.71, (d) projection at z=2.71. All
with real-m filter.

Although most of the information about optical properties is lost, the 3D local-
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ization of single objects is quite good. The slices with the greatest noise are either near
the detection or source planes. The issue of multiple objects at different depths will be
addressed later in this paper.

5.1.2 G-filter imaging

Next we use the combination scheme described in section 3.8 to reconstruct the single
object data. Our experimental noise threshold was 3x1073 for all cases. For z; = 2.71lcm,
the G-filter was set for p=q= 1.01/cm at maximum, and the resulting image in this plane
is shown in fig.(6a) . Notice that the image is a little cleaner than the real-m image with
most of the artifacts from the characteristic ringing near the corners of the reconstructed
volume. The optical properties (although still not accurate for such a deep object) are
more reasonable.

0 05 " 15 2 25 2 as s s 5
z(cm)
(b
Figure 6.  (a) projection at z=2.71 at real-m peak, (b) S; vs z; (cm) through
the transverse center peaks at z=4cm , (c) projection at z=4.0. All obtained with
G-giltering.

We next computed S; vs z; using the G-filter (see fig.(6b)). Notice that the
peak value of S; has shifted from its true value. The G-filter image (at p=q=2.36/cm)
based on this new z; is shown in fig.(6c); we see that the image is sharper and has
better optical properties. This is very important for multiple wavelength images as we
observe that the ratio of reconstructed optical properties is fairly well approximated
by this technique. However, its actual location is systematically shifted away from its
true value. At present we do not fully understand the origin of this systematic error in
a deep way. We find that this shift is related to the amount of power cut out by the
filter. By changing the filter spatial frequency cut-off to a lower frequency (increasing

#9187 - $15.00 US Received March 01, 1999; Revised March 29, 1999
(C) 1999 OSA 12 April 1999 / Vol. 4, No. 8/ OPTICS EXPRESS 258




the threshold) we find that the shift is increased but the optical properties at the shifted
location however approach their correct values.

Finally we note that since the maximum spatial frequencies used in the G-filter
approach depend on object depth, we can expect our resolution to decrease with increas-
ing object-detector separation. Following Pattanayak [31] our approximate experimental
resolution, L, depends on the maximum allowable p and g, i.e

27\ 2
p12naz + qrznafc = (f) . (12)

In fig.(7) we show the change in resolution with depth assuming our experimen-
tal S/N threshold. While the exact numerical values depend on approximations in [31],
the important qualitative effect to note is that the resolution improves dramatically for
objects near the detection plane.

15 T T T T T T

1 ! It L ! 1

15 2 25 3 35 4 4.5 5

Z{cm)

Figure 7.  Estimate of resolution(cm) vs distance from source plane (cm) . The
changing depth dependent cut-off frequency results in the increase in resolution with
distance from source plane (i.e decrease in resolution with depth from the detector
plane).

5.2  Tissue phantoms with two slice heterogeneities / three dimensional renderings

We now simulate two objects with same dimensions and optical properties but in a more
complicated geometry where in principle the scattered waves from one heterogeneity
could effect the other. One object is centered at 3.07cm deep with its transverse center
at x=y=1.97cm and the other object is 4.35cm deep with its transverse center at
x=y=-1.97cm as shown in fig.(8). The amplitude of the “measured” scattered field at
the detector plane is shown in its noiseless and noisy version in fig.(8) for comparison.

“C.T) y(c’r;!)

4 -2 0o 2 a%Xem 4 2 0 2 a4 ¥em

Figure 8. Two slice Phantoms: Two leftmost figures show 3D renderings. Gray
region has background properties. The detector plane is at z=5cm and the source is
at the origin in z=0cm plane. Amplitude of the scattered field at the detector plane
is shown in the two rightmost figures. The left is the noiseless data and the right
shows the data after adding noise.

We performed essentially the same set of reconstruction procedures as described
in sections 3. and 5.1 . In fig.(9a) we show that S; has two maxima in different planes
depending on the heterogeneity under consideration using real-m filter. Note that the
real-m images were more noisy by comparison to the single object phantom. We again
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find that the optical properties are most accurate where S; has its shifted maxima with
the G-filter. These images are shown in Fig (9b,c). Absolute values are closer to the real
values for shallow objects and the positional shift also depends on the depth.
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Figure 9.  (a) Circles (crosses) show Sj vs z; (cm) through the center region of
deeper (shallower) object obtained with m-filter. Peak for both objects are exact.
Then with G-filter we get projections at (b) z=3.71 and (c) at z=4.41.

Finally, by calculating S; at all the voxels we can generate three dimensional
images of the entire reconstructed volume. That is, for each of the 36 projections we
calculate the value of S; for all transverse pixels (65x65= 4225 values in each pro jection)
and plot all S;’s in three dimensions. In fig.(10a) and (10b) we show an isosurface
rendering at value S; = 0.042 at two viewing angles. Two dimensional projections in
plane y=2cm and plane y=-2cm are also shown in fig. (10c) and fig.(10d) to provide a
better sense of contrast. Comparing this to fig.(8) we see that the shallow object is very
well reconstructed both in terms of shape and location. The deeper object has lower
resolution and is shifted from its original location. In the corners we see the characteristic
ringing effects from Fourier domain reconstructions. These latter artifacts, however, are
usually fairly easy to identify. We find that, even when the objects are close to the image
edges we are capable of separating objects from ringing artifacts. We are investigating
presently whether it is possible to extract any quantitative or qualitative optical property
information from these images.
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Figure 10.  Three Dimensional Rendering of the G-filter reconstruction. An iso-
surface at S; = 0.042 is shown in two different angles in (a) and (b). In (c) and
(d) images of S; in x-z plane through y=2cm and y=-2cm are shown respectively.
Compare the results to that of fig.(8)
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6. Conclusion

We have studied projection images of turbid media based on the angular-spectrum
representation. We demonstrated two filtering schemes. One of them, the real-m fil-
ter, provided object location information with no free parameters; the other method,
the G-filter, introduced a systematic approach for eliminating high spatial frequencies
from the reconstructions. Image localization in 3D was demonstrated using both filters
by maximizing the object signal-to-noise (S;) on a slice-by-slice basis. Despite these
successes, some image artifacts remain and must be addressed in future work. These
include: noise near the detection plane and image boundaries, systematic shifts of the
object location depending on filtering schemes and noise floors, and optical property
accuracy.
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Abstract

An angulan spectrum algorithm is presented for fast, near-field diffraction
tomograplic imaging with diffuse photon density waves in highly scattering
media. A' general relation in K-space is derived that connects the spatial vari-
ations of thie optical properties of heterogeneities to the spatial spectra of the
measured scattered diffuse photon density waves. The theory is verified exper-
imentally fon situations when boundary effects can be neglected. We further
deseribe how ta incorporate houndary conditions into this angular spectrum
algorithm for a turbid medinm of finite size, the slab medium. Limitations
and potential improvements of the near-field diffraction tomography are also

dizaussed.
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I. INTRODUCTION

Optical radiation was used to image breast tumors by thie shladowing effect as early as the
1920’s [1]. However, recent advances in light generation and detection, along with improve-
ments in our theoretical understanding of near infraved (NIR) light propagation in tissue-like
Wighly scattering turbid media have opened new possibilities for optical imaging of the inte-
rion of thick biological tissues [2]. In highly scattering media such as biological tissue, light
propagation is described adequately within the diffusion model of photon transport [3-5].
Tt Has been shown by several investigators that diffuse photon density waves, which are cre-
ated inside highly scattering media by an intensity; modulated light source, obey a Helmholtz
wave equation with a complex wave number [6,7]. In spite of the complexities resulting from
strong tissue scattering, the new modality with diffusing photons offers many attractive fea-
tures for imaging thick tissue. These features include non-invasiveness, low cost, and unique
aptical contrast and spectroscopic signatures with clinical and physiological relevance [8,9].

The goal of optical imaging with diffusive photon density waves is to reconstruct a low
resolution map of the heterogeneous absorption and scattering properties from the measure-
ments of diffuse photons on the sample surface or within the sample. Image reconstruction
entails aolwing the inverse problem. Most quantitative optical image reconstruction algo-
rithms suchi as the Algebraic Reconstruction Technique (ART) and the Spontaneous Iterative
Reconstruction Technique (STRT) [10], the Newton-Rlaphson technique combined with finite
element numerical method [11-13], the Conjugate Gradient Descent technique [14], and the
Singular Value Decomposition (SVD) [15], rely on iterative schemes in a least-square sense.
The optical image recanstruction therefore requires a significant amount of computational
resources and time.

Recently, we shiowed that by essentially following the techniques of diffraction tomog-
raphiy [16,17], it is possible to rapidly recomstruet thin slice and spherical objects whose

absorption and for scattering parameters diffen foom the background homogeneous scatter-

ing medium [18]. The image reconstruction algorithm employing the diffraction tomography




technique (called angular spectrum algorithny in this paper) is rapid, permitting object local-
ization and characterization in ~ 1000 valume-element samples on sub-second computational
time scales. The primary purpose of this papen is to provide a more complete discussion of
thie results reported in those earlier papers. In addition, we will provide detailed analysis of
this algorithm incorporating the effects of finite boundaries. We will finst derive the general
integral solution of the total and scattered photon density waves in a heterogeneous turbid
medium within the first order Born approximation (Section II, IIT and TV). Wa next derive
a relation in K-space between the spatial spectrum of the heterogeneity function and tihfé
apatial speatrum of the measured scattered diffuse photon density wave (Section V (A)). Ex-
perimental results are presented to verify the feasibility of the angular spectrum algorithm
for image reconstruction. Some limitations and potential improvements of the diffraction
tomography are also discussed (Section VI). Finally we present a discussion about how to
incorporate bonmndary conditions into this angular spectrum algorithm for a turbid medium

of finite size, in particular, the slab medium and the semi-infinite medium (Section VII}.

_ II. PHOTON DIFFUSION EQUATION IN HETEROGENEOUS MEDIA - A

PERTURBATION APPROACH

Light tranaport in highly scattering turbid media is often well described by photon diffu-
sion [2). Clonsider a light sounce at r, with its intensity sinusoidally modulated at modulation
frequency f, e.g., the sounce term is S(r,#) = S(r)e ™t = Mye ™ !6(r —rs), where w = 27 f
is the angular source modulation frequency’, M is the source strength representing the
number of phiotons emitted per second. Clonsider steady state photon diffusion in which the
phioton fluence &(n, £) bias the same time dependence as the source, i.e., ®(r, 1) = d(r)e .

Tt i sfraight forward fo show that the photon fluence ®(r) satisfies the photon diffusion

"The continuous-wave (W) case is a special case where w — 0 and the frequency domain analysis

can be readily applied to the GW case.




equation [3-5]:
V - (D V&(r)) — v, ®(r) + i wdn) = —vS{n) . (1)

Here the common time dependence exp(—i w t) ofl the fluence @(r) and the source S(n) are
omitted. v is the speed of light in the turbid medium; D = ﬁ is phioton diffusion coefficient)

i, and p are respeotively the optical absorption and reduced scattering coefficients. Since

V- (DVI®) = DV?® + VID.- V& and VD = Vgt = —55 Vﬁlf,"“, Eq. (1) can be rewritten as
— X g /
V2 (r) 13 (T T Ny - VEs  9a(r) = —3,4 S(r) . )
s v Mf s

Tn a homogeneous medium, the absorption and scattering coefficients (u.0 and i) are

constant, and thle above equation reduces to a simple Helmholtz equation:
(V2 + kg)®o(r) = —3pgo S(x) - (3)

Here thie wave numben kg is complex and ko = [3p/,(Z2£2t22)11/2 with In(kg) > 0 to ensure
thiatl tihe plioton demsity goes to zero at a large distance. The simplest solution of this

Helmbioltz equation shiows that photons propagate collectively as a damped spherical wave

eXP(iko|r—rs|

outward from the source, .e., o(r) oc =72 =

Tn an optically, heterogeneous turbid medium, the spherical wave-fronts of the homoge-
neous incident wave ane distorted by inhomogeneities and scattered waves are produced.
The concept of the scattered wave is illustrated in Fig. 1. The total photon density wave

M(n) is the sumi of the incident wave ®o(r) and the scattered wave @g(r):
d(r) = Py(n) + D (r) . (4)

This formalismi is not limited to an infinite geometny. In géner:ali the incident wave ®q(r)
corresponds to the photon density wave in a homogeneous turbid medium for an arbitrary
geametry, and we interchiangeably use anothen name - “background photon density wave” -
for ®o(n); the scattered wave & () represents the perturbation of the incident wave in the

presence of inbomogeneities for fhe same geometny. The soattered wave is determined by
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characteristics of thie inhomogeneity such as its size, shape, position and ifs absorption and
scattering properties. The goal of optical tomography is to reconstruct the map of these
heterogeneous optical properties from measurements of thie scattered wave. We first derive
thie photon diffusion equation obeyed by the total photon density wave within thie first order

Borm Approximation.

{
s

In a heterogeneous medium we write the optical properties (1, and p)) as the sum of

background optical properties (a0, 1) and the variations relative fo the background (8.,

Iz

dus), ie.

e = Mo + Ol (5)

W = o+ Opty - (6)

We considen thie case of weak optical inhomogeneities where dp1, < g0 and dul, < . The
optical inlomogeneities introduce a weak perturbation to the incident wave, i.e., |®;.(r)| <«
|®o(n)|. Subistituting Egs. (5) and (6) into Eq. (2) and keeping only the zeroth and first
order ferms in optical property variations (i.e. Ouq, d4) as well as in the scattered wave

(@,,(n)}, we find

‘ ] S(I‘) - Tabs(r) - Tsc(r') ) 07)

whiere we have infroduced the heterogeneity functions Tpy(r) and Ty.(r) representing the

perturbations due to the absorption and scattering variations. They are

. v
Tps () = —H‘I’lo(l") Gpta(r) (8)
o
. 3Dk Vi + 6yt
Ty = 2208 o) ) — L O g ) )
! 50
Here Dy = %~ is the background photion diffusion coeflicient; ky = [(—vpao + 2 w)/Dy i/2
34

2()

i the wavenumber of the incident diffuse photon density wave ®y(r). Note that 5—‘:%3) S(r)
A

in thie first term on fhe right-hand side of Bq. (7) is zero as long as the source is outside

the inhomogeneity (which is generally the case in practice), and therefore we can drop this

termi from Rg. (7). T addition we assume, for simplicity, that the scattering varies slowly in

-

9]




space and the second term in Bq. (9) V—MQ%M - V&g (m) can then bie neglected. We thus
have the following simplified equation within the first arder Born Approximation:

U

(V2 +E)B(r) = — = S(x) - T(r) , (10)
Dy .
where T(r) = Typs(r) + Tue(r) and the heterogeneity funations Tops(r) and Ti.(r) are given

by

‘ v =
Tabs(r) = __D"@U(r') 01, (1) (11)
0
3Dy k2

Too(r) = 5 0 D (r) Spsg (r) (12)

We see that the heterogeneity functions due to the optical inhomogeneities can be treated
as equivalent “source” terms which give rise to the scattered component &, (r) of the total

diffuse photon density wave ®(r).

III. TOTAL DIFFUSE PHOTON DENSITY WAVE IN HETEROGENEOUS

TURBID MEDIA — THE GREEN'’S FUNCTION APPROACH

We will take a Green’s fiunction approach to derive the total and therefore the scattered
phiaton density wave in a heterogeneous highly scattering medium. Consider the Green’s

function in turbid media which satisfies
(V2 + k) Gr, ") = —4(r, 1), (13)

where ko = [(—vfta0 + i w)/Dp]*? is the wavenumber of the incident photon density wave

(the same as in Flg. {10)). Using the Green’s theorem, we obtain an integral expression for

the total optical density wave ®(r):

) = 5; J1S(r) Glr. 1) @r' [ T(') G(r,r') d*r’

+ G, e 220D () 2Cnrl] g AT - (19)
8

ant an

The first term on the right-hand side of Eq. (14} is a volume integral of the light source

over the enfire furbid medium. Tt gives ns the incident wave. The second term is a volume

6




integral of the heterogeneity function over the entire furbid medium and it determines the
perturbation resulting from the optical heterogeneities. The third ferm is a surface infegral
over the closed surface of the entire turbid medium. It takes into account the houndary
effects on the total photon density wave, and it includes cantributions to the tofal photon
density wave from both the incident wave and the scattered wave on the boundany. »’ in the
surface term denotes the surface normal pointing outward. For an infinite heterageneous
medium, this surface term is zero since the enclosure surface of an infinite medium is at
infinity. Therefore the scattered wave can be simply separated from the incident wave.
For a finite turbid medium, however the separation of the incident wave component from
the scattered wave component in the surface term is generally difficult. It is advantageous
therefore to remove the surface integral from the total photon density wave by choosing an
appropriate Green's function. We will consider this complicated (yet more realistic) case at

the end of this paper. We will start with a simple case - the infinite geometry case.

IV. SCATTERED WAVE IN INFINITE HETEROGENEOUS TURBID MEDIA

Alz shiown in Fig. 1, in thle presence of optical heterogeneities, the total photon density
wave congists of fhe inoident wave and the scattered wave, and the scattered wave carries
the information of thie optical inhomogeneities. Starting with Eq. (14), we can easily find
the relafion between the scattered wave ®,.(r) and optical inhomogeneities, for example
through the heterogeneity fanction Toe(r) and Ty (r). For an infinite geometry, the surface
integral in Bq. (14) disappears. The incident wave in this case is given by the first term
(wolume integral of the souree) on the vight-hand side of Eq. (14). For an infinite geometry, .

fhe Gireen's functiomn Gofn, 1) which satisfies Bq. (13) is [19]

Gnﬂr: n’] — expﬂiknln — r/u

17
dr|r — 1| (15)

Using fhis Green’s function and considening an infinite medium with a point source at rs,

ie., S(r') = Mpd(r' — ng), we can readily obtain the incident wave, lL.e.




n— 1)

exp(iko
4rn—r| 4w Dy n—

n—r'|]  vMgexpliko

$y(r) = Il)—lo /| dPr* Myd(r' — ng) (16)

where M} is numbler of photons emitted from the source per second. We see that this
incident wave is ofl course the same as the one obtained by directly. solving the Helmhloltz
Equation. The scattered wave (by definition) is the differencer between the total phioton
density wave ®(r) and the incident wave ®y(r), which is related to the volume integral of
thie heterogeneity: function, i.e.

®,.(r) = B(r) — Bo(r) = /@T(rf); Go(n, ') &3 (17)

V. IMAGE RECONSTRUCTION ALGORITHM AND EXPERIMENTAL

RESULTS

The scaftered wave depends on the heterogeneity function. In practice the scattered
wave can be obtained from measurements and the knowledge of the incident wave. Given
the scaftered wave, how can one obtain the heterogeneity function and thus du,(r) and
61, (n)? The approach we take here employs the angular spectrum analysis of the scattered
wave. Tn this approach we relate the spatial spectrum of the scattered wave to the spatial
apectrum of the hieterogeneity function. The basic ideas are similar to those of diffraction
tomiagraphy [16]. The analysis involves forward and inverse Fourier transforms following the

conventions given in Appendix A.

A. The Angular Spectrum Algorithm

The detection geometry we congider for the angular spectrum algorithm is a 2-D planar
geometry. As shown in Fig. 2, the scattered wave ®,.(r) is determined at a plane z = 24
from a sef of measurements in that plane. Eq. (17) tells us that the scattered wave ®.(r)

is the convolution of the heterogeneity function T'(r) with the Green’s function Go(r,1’). In

order to reveal the relation befween the scattered wave and the heterogeneity function in




K-space, we first expand the Green’s function in terms of plane waves in two-dimensions,

1.e.

+00
Go(rg,r') = // dpdq G‘O(p, q, %4, 7' ) e~ i2m [p(ea—z")+a(va—y')]
—CC

+oc .
1 P T TR ot 2
— // dpdq fn ezm|,,d—~ | e i2m [p(zqg—5 ) +olva—1")] ’ (18)

—oC
whiere (p,¢) are the 2-D spatial frequencies with respect to the x-y coordinates. In the
second line of the above equation, we have employed the Weyl expansion of the Green’s

function [20], i.e.

v ei"”lZd—Z'I , (19)

éﬂ(p7 q; Zd; zl) = I

whiere mi = [k2 — (27)?(p? = ¢%)]'/? and Im(m) > 0. The derivation of the Weyl expansion
ofi thie Grreen’s funation is given in Appendix B.

Note that Eq. (18) is the angular spectrum representation of the Green’s function, a
solution of the wave equation with a point source at (z',y, 2) (see Eq. (13)). At any point
inside thle halfi space to the right (or left) of the source, there are eigen-plane waves in
tHe x-y plane whose amplitudes and phases vary with the distance from the source |24 — 2/|.
Because of the large positive imaginany part of m, the amplitude decays exponentially versus
thle perpendicular distance |24 — 2’| away from the source point. Plane waves with large
spatial frequencies (p,g) (and therefore a large imaginary part of m) will have negligible
amplitudes. This is the characteristic difference between diffuse photon density waves and
ardinary diffractive electromagnetic waves in lossless dielectric media. These plane waves will
e scattered by optical inhomageneities and their resulting amplitudes and phases will carry
information about the absorption and for scattering characteristics of the inhomogeneities.

Tf we substitute fhe angular spectrum representation of the Green’s function (Eq. (18))
info the volume integral of the soattered wave given by Eq. (17), after simple algebraic
manipulation and inferchianging the order of integrations, we obtain the following represen-

tation, known as the angular spectnum vepresentation of the scattered wave:




P, (ry) // dpdg e~ retans) /rﬂzl Golp. 4. 20, 2) Tip, . 2') (20}

where T'(p, ¢, 2') is the 2-D spatial spectrum (Fourier transform) of thie heterogeneity func-

tion, i.e.
o
T(p,q,7) = / V da'dy T(a',yf, ) e @+ ) (21)

Taking the 2-D Fourier transform of the scattered wave ®,.(rg) in the detection plane af

2= 24, 1.8,

Dyofry) = / dpdq ®,c(p, g, 7q) €~ Pratava) | (22)

and comparing Fq. (20) and Eq. (22), we then obtain the relation between the spatial
spectrum of the scattered wave and the spatial spectrum of the heterogeneity function at

any given spatial frequency (p, q), i.e.
d,e(p. G, 2a) / dz' Go(p, ¢, 24, 2) T(p, ¢, 2") - (23)

Without losing generality, we assume the optical heterogeneities are below the detection
plane. This assumption enables us ta remove the absolute value 51gn in the Weyl expansion
in Fqg. (19) since 2y — 2" > (0. We also assume thle heterogeneities are localized between the
detection plane at 2 = z; and a plane at z = 25. Thus we need consider only the interval
between (7=zy, n=2,) for the integral in Fq. (23). Dividing the turbid medium between the
plane at 2 = z and the detection plane into slices, we can rewrite Eq. (23) in the following

form of digseretized summiation:

\'r
Boollp. g, 24) = Y A2 T{p. q,2) Golp, 4, 24, 75)
j=I
N
1Az .
_ T z tm-(.zd—Zj_) 24
jzl 2',” (7) q ]|) bl ( )

where in the second line we substitute the Green's function Gy(p, g, 74, 7;) with its Weyl

expansion (Fq. (19)); Az is the discretized step size along the z-direction and N is the total
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number of slices in the z-direction. Tdeally the discrefization step size Aa needs to be as
small as possible. In practice we choose Az to be a few random walk steps (i.e. ~ ﬁ)

Eq. (24) implies that at any given spatial frequency. (p, ¢}, the heterogeneity, functions at
different depth' z;’s can be thought of as the “source terms” for the scattered wave. The plane
waves arising from different slices propagate along the z direction ta the detection plane.
During the propagation these plane waves experience different amplitude attenmation and
phlase shifts which are given by e ~%) /m, where m = (k2 — (2m)2(p? + ¢*)]"/? is & complex
number with Im(m) > 0; the scattered wave detected at the detection plane z = 24 is thus a
sum of plane waves originating from the heterogeneity functions at different depths. In Fig. 3
we illustrate this concept. In this figure we consider two non-zero heterogeneity functions
T (p, =) and To(p. 25) corresponding to plane waves along the x-direction in the x-z plane
(i.e., ¥ = 0} with a spatial frequency p at depth z; and z. The perturbations from these
fwo slices propagate to the detection plane with a phase shift and amplitude attenuation
factar e™(= =) ;. Akt the detection plane the perturbations from these two slices add up
to make a scattered wave (f)'sﬂ(p, zq) at the same spatial frequency, p.

Tt K-space the propagation of the penturbation T(p, q, z;) at different depths z4 — z; is
weighted by thie amplitude attiennation and phase shift given by the Weyl expansion of the
Gireen'’s function Golp, q, za, z;) = 1 ™a=%) /(2m). Recall m = [k§ — (27)*(p* + q%)]'/? with
Tra(mi) > 0, therefore the amplitude and phase of the Weyl expansion Go(p, g, 24, 7;) depend
on the spatial frequency (p, ¢) at a given depth zg — z;. The amplitude decays more quickly
as thie spatial frequencies (p, q) increase, and the Green’s function effectively acts as a low
pass filter in K-gpace.

For spatial frequencies (p, ¢} with the range of (0, 1.6) em~!, we plot the amplitude and
phase of the Weyl expansion { ~ e"™(22=%) ['m) in Rig. 4 (a, b) assuming the depth is z;—2; =
1 em. T ealeulating the incident. diffuse wave wavenumber ko = [(—v a0 + ¢ w)/Dy]'/* we
choose Background optical propenties paq = 0.02 em™ and phy = 8.0 em™', and a 140

~ 1.1 em~'. We find that

VIH72 modulation frequency. The resultiant wavenumber is |k

the amplitude attenuates by ~7 orders of magnitude when the spatial frequencies (p,q)
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increase fram (0, 0) em™! to (1.6, 1.6) ecm™".

In practice the maximum spatial frequency
is determined by the Nyquist sampling frequency, i.e. @mae = 1/2Az ~ 0.833 em™! for a
scanning step size Az = 0.6 cm. In Fig. 4 (¢, d), we also plot the amplitude attenuation
and phase shift versus depth for given spatial frequencies, i.e. (0.1, 0.1] em~" and (0.3,
0.5) em™'. The amplitude attenuates exponentially, and thle phase shift increases linearly:
as we consider the perturbation from deeper slices. Again as already shown in Fig. 4 (c),
thie amplitude attenuates much faster at spatial frequencies (0.5, 0.5) cm™" than at (0.1,
0.1) em™'. At any given depthl (zg — z;), those plane waves with sufficiently large spatial
frequencies (p, ¢] have negligible contribution to the scattered wave, and therefore carry less

infarmation about the inhomogeneities.

B. 2-D Projection Imaging

2-D photographic images have been used by radiologists for many years. In order to
acquire 2-1 photographic-type projection images, we make a “thin” slice approximation by
replacing »; on the left hand side of Eq. (24) with the estimated slice position of the object.
We then drop the sum over. all other z;’s and obtain the following simple relation at any given
spatial frequency (p, q) in K-space between the heterogeneity function at depth 2z = 2; and

the measured scattered wave at the detection plane z = 2z

’f“(P s Zanj) = (ﬁ“(p’ 2 zd)
Ay ool Az GnGp:‘L 2d,y Zobj)
2m - —im(zq—Zob; ) 3
o L.’NZ (Ds(z(pa g, “‘d.) € v (20)

This “thin™ slice approximation may be adequate since we are often interested in early
tumors whose size will be of the arder of slice thickness of ~0.5 cm, and thus can be
considered fthin. As we discussed at the end of Section V(A), plane waves in K-space
with large spatial frequencies (p,q) are attenuated quickly as they propagate within the
turbid media. The largest detectabla spatial frequencies are determined by the sensitivity

and signal-fo-noise ratio of the defection system. For image reconstruction, we neglect the
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high spatial frequenay components {p,q) in the heterogeneity, function ’f.(n,q,zw,j) when
Im(m) > 3.5Im(ky), by using an empirical “m-cut” filter in K-space [21].

When the heterogeneity function in K-space, f(p,q,mof,j), is determined by Bq. (23),
we can then take the inverse 2-D Fourier transform of T(}p, . Za;) to obitain the tumor
function TV(z,vy, zm,) in the real x-y space at the depth of the heterogeneity z = Zz;.
We derive a 2-D photographic image of the optical properties nsing Egs. (11] and (12);
for example, 614(2, Y, Zobs) = Tavs (2, Y5 2ob5) /(— D5 Doz, y, Zasj)) fon abisonbing objects, and
Sullz,y, zay) = Teol®, v, z(,,,j)/»(y-)%ﬁgl y(z,y, 2z0;)) for scattering objects. Note that for
a purely absonbing or scattering object, either a frequency domain (modulation frequency
f # 0) on a continuous-wave (CW, f = 0) DPDW can be employed to extract the absorp-
tion or scattering variation; but for objects having both absorption and scattering variations,
a (IW DPDW is not sufficient to separate the absorption and scattering. Details will be
discussed in Section VI(A).

Clonsider next a case where the optical heterogeneities are located within a “thin” slice
at 2 = 7, (see Pig. 3). If the slice thickness Az is less than a few transport mean free path-
lengths [1/(/t'y + f1a0)], the heterogeneity function within this thin slice is approximately
uniform, therefore Bg. (25) provides a quite accurate relation between the heterogeneity
function and thie scattered wave in K-space, and optical properties of the heterogeneity can
furthier be deduced quite accurately. For thicker objects (i.e. thickness >4 mm), the average
aver fhie size of the ohjeot weighted by the sum of exponential amplitude and phase factors
e ™% =%i) i provides only an approximate relation between the heterogeneity function and
the scattered wave. Howeven we find that the relative optical properties of multiple objects
can still be reconstructed with an reasonable é.ccunacy.

Obwiausly;, the image reconstauction involves only 2-D forward and inverse Fourier trans-
farms, and no iterative schemes are needed; therefore this angular spectrum algorithm is

very rapid.
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C. a prioni Depth Information and Perspectives of 3-D Imaging

From the derivation we notice thiat in principle, this K-space spectrumi analysis algorithmi
should work well when the optical heterogeneities are confined within a fhin slice. The
reconstruction then provides a 2-D phiotographic projeation image of the aptical properties
given a priori information about the depth of the heterogeneity. Since the heterogeneity
function (therefore the optical properties of the heterogeneities) is related to the scattered
wave via the Weyl expansion of the Green’s function, and since the amplitude and phase of
thle Weyl expansion depend upon the depth 24 — 2z;, an incorrect depth estimate produces
incorrect values of the reconstructed optical properties. However, rough estimation of the
depth infhrmation can be tolerated if it is desirable to reconstruct contrast images of multiple
albijects.

Fq. (25) reveals how the heterogeneity function and hence the reconstructed optical
properties of the heterogeneities vary with the estimated depth. Choice of a too small
depth underestimates thie optical properties and a too large depth overestimates the optical
properties. Fig. 6(a] shows the reconstructed absorption coefficient of a spherical object
versus the estimated depth 24 — z4,;. In this case we have a spherical object of 0.5 cm radius
2 cmv below the detection plane, i.e., 25 — 24;=2 cm. The true optical property variations
of thie sphieres with respeat to the background are du, = 0.02 cm™! and dy), = 0. We
find that the reconstructed absarption increases as the estimated object depth increases.
Tni Fig. 6(b) we plot the natio of the reconstructed absorption coefficients of two spherical

1

absarbing objects (6424 /o ubs") versus the estimated depth. One sphere of §pto1 = 0.04 cm™

and o', = 0 em™"ig at (2, 1, 3) em and the othen sphere of 80 = 0.02 em™' and dpl, = 0
em™' is af (1,-1 3} em. Two spheres have the same size (0.5 cm in radius) and they are
chiosen to fo be at the same depth, e.g. 2 cm below the detection plane. Therefore any
depth estimate is either correct on incorreat for both objects at the same time, and we do
not blave fo take info account thie additional complexity shown in Fig. 6{(a). We find that

the rafio ofithe reconstructed absorption coefficients is not sensitive to the depth estimation,
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and therefore the incorrect depth estimate for contrast image can he tolerated in this case.
The image quality is also affected by the chioice ofia prioni depthl. Recall thie hieterogeneity
function and the scattered wave in K-spaoce is coupled to eachi othier via the Weyl expansion
(see Eq. (25)). The factor e~z ~%i) m increases exponentially with thie (2; — 2,,). The
noise (numerical and experimental) can be amplified at greater depths (zq — z.;). A series of
reconstructed images with different depths are shown in Fig. 7. In this example an absorbing
spherical object is at (2, 1, 3) cm and the scattered wave is measured in thle plane at 2=3
e aver a 9 x 9 cm? square with steps of 0.6 cm. The images (b-f) are reconstiructed with
assumptions of the depth (zy — 2z;) to be respectively 4, 3, 2, 1, 0 cim. We find that the
image quality gets worse (e.g. noisier) at greater depths. The depth-dependent noise and
the muonotonia variation of the image sharpness make it difficult to estimate the true object
depthl from image sharpness. For a spatially extended object, however, a chbice of a shallow
depth is often sufficient to reconstruct fairly well the spatial margins of inhomogeneities.
In order to obtiain better 3-D information with this diffraction tomography technique, one
can use a secondary localization scheme to deduce the object depth. An example would be
to scan the phased-array in two orthogonal planes [22,23]. Alternatively as shown in Fig. 8,
if we take two planan measurements along two different directions of the same sample, the
prajection image 1 from the first measurement in one plane (plane 1) will provide the depth
information for the projection image 2 from the second measurement in the other plane

(plane 2).

D. Experimental Results

To demonstrate the experimental feasibility of this algorithm, we have performed ampli-
tude and phase measurements in a parallel-plane geometry (Fig. 2). We used a rapid homo-
dyne detection system based upon In-phase/Quadrature (IQ) demodulation techniques [24].
The black diagram of the experimental setup is shown in Fig. 9. Source light intensity is

miadulated at 100 MHz and the source power is about ~3 mW at 786 nm. The source light
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is guided into a large fish tank of 50 Liters 0.75% Intralipid (14,=0.020 cra™", p}=7.3 cm™")
with a fiber bundle of 3 mm in diameten. The large volume of Tntralipid enables the use
of infinite medium boundary conditions. A detection fiber bundle also off 3 mm diameter,
oouples the detected diffusive wave to a fast avalanche photo-diode (APD].

The experimental geometry is shown in Fig. 2. The source pasition was fixed and taken
to be the origin of oun coordinate system. As shown in Fig. 2, we “made” the detection
plane Hy scanning a single detection fiber over a square region from (-4.65, -4.65, 5.0) cm to
(4.63, 4.65, 5.0) cm in a plane at z4=>5.0 om in steps of size Ax=Ay=0.3 cm. The amplitude
and phase of the DPDW was recorded at each position for a total of 1024 points. Each
data pointl takes about half second. We directly measured the amplitude and phase in the
homiogeneous medium to obtain the incident wave ®¢(rq).

T this experiment, a absorbing slice with dimensions 1.5 x 1.5 x 0.4 cin® was submerged
in the turbid medium (0.75% Intralipid) at position (-1.6, -0.3, 3.0) cm. The slice was made
ofi resin plus TiO, and absorbing dye. TiO, particles (from Sigma) cause the scattering and
the absorbing dye (900NP from Zeneca) causes the absorption. The absorption coefficient

of the slice was fq o &~ 0.20 cm™'; its scattering coefficient was about the same as that of

the background, i.e. ~7.3 om~!'. The scattered wave ®,.(rq) was obtained by subtracting
the incident wave ®yrg) from the measured (total) signal ®(rq).

For image reconstruction, we fivst take the 2-D Fourier transform of the scattered wave
&,,(ng) measured af the detiection plane 2 = zq. Using Eq. (25) along with a priori informa-
tion about the slice depth, we then obtain the heterogeneity function in K-space T(p, q Zobj)
in the plane containing the slice at z = 2,;. During this step, an “m-cut” filter is used to
neglect h’ig'h'— spatial frequency components with Imu(m) > 3.5Im(ko) in the heterogeneity
function Ti(p, ¢, Zon; ). We then take 2-D inverse Fourien transform of T'(p, q, Zopj) With respect
fo spatial frequency (p, ¢} to obtain the heterogeneity function T'(2, y, 2,;) in real space. Fi-
nally: we divide the heferageneity. function T'(z, 1, z05;) by the background field ®¢(z, y, 2015)

in the plane containing the slice at z=z4; ta obtain a spatial map of the reconstructed

16



absorption variation, e.g., §14, (2, Y, Zo1;) = Tops (%, Y, a(,l)_i)/('—é—’o Do(Z, Y, 2015)). The homoge-
neous background field ®y(z, y, zs; ) is caloulated using the best estimated optical properties
(1a0=0.017 cm~! and p'y=7.21 cm™') by fititing the incident wave @yfng} measured in the
detection plane z=z4 to the exact solution of DPDW's (Eq. (16)). The reconstructed images
of the slkice are sHown in Fig. 10. The reconstructed x-y position was about at (-1.80, -0.23]
cm, close to the true x-y position at (-1.6, -0.3) cm. Inaccuracies in thle position measure-
meents might account fon thie discrepancy. The reconstructed absorption coefficient is well
abiove the background noise level and close to the true value, e.g., 6%, ~ 0.125 om™".
Errors in oun estimate of the slice depth and background optical properties estimates are
thie miain sounces of inacouracy in reconstructed absorption properties. The refractive index
mismatchi batween the object (~ 1.46) and background medium (~ 1.33) also contributes to
the inaccuracy in the reconstruction. The complete reconstruction based upon forward and
inverse FFT caloulations takes less than 0.2 second CPU time on Sun Sparcl10 workstation.

The feasibility of this diffraction tomography algorithm for multiple slices and multiple
spatially extended optical heterogeneities has also been experimentally verified [18]. We
found thiat the optical properties of thin objects or the relative optical properties of spatially
extended objects {contrast image) with a priori depth information can be reconstructed with

a reasonable accuracy.

VI. TWO ISSUES RELATED TO ANGULAR SPECTRUM ALGORITHM

The angular spectrum algorithm provides an approximate relation between the hetero-
geneity function {or fhe heterogeneities) and the scattered wave within the framework of
the first order Born approximation. Tn addition to this first order approximation, it also
requires thie information ofi the background optical properties. The resultant images are 2-D
photographic-type imiages. Tn this section, we will consider the possibility of simultaneous
reconstruction of the absorption and scattering coeflicients, and we will explore methods to

extract the backgraund optical propenties from a single measurement on a heterogeneous
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sample.

A. Absorptiion and Scattering

So far we have assumed that we have either purely absorbing inhomogeneities or purely
scattering inhomogeneities, but not a mixture. We introduce a dual modulation frequenay
approach as a means to reconstiruct the absorption and scattering coefficients simultaneously.

When both absorption and scattering variations are present, the heterogeneity function

is (see Bg. (11) and Eq. (12))

(6) = = 2 ) dle) + 22 000) ) (26

Within a “thin” slice approximation, the heterogeneity function T'(r) in the plane at z = zy;
can be obtained using the angulan spectrum algorithm. Dividing 7'(r) by the incident wave
Bo(lo) in thie plane at » = 2z, we obtain the following quantity, denoted by F'(w), which is
a function of 6, 8¢, as well as the modulation frequency w, i.e.

T(r _ Bw. o, .
(1)0((1})_ ’zolij = —3#’{90 57“’(1 (I‘) + [—311%0 + ZT] 61“’5 (I‘) - (27)

Note that the scattering variation 6y, appears along with the modulation frequency, while

Flw) =

dpto does nat. Therefore, if we measure the scattered wave at two different modulation
frequencies w, and ws, the difference between the two the reconstructed F(w;) and F(w,)
will only be related to du:

:7.3 (wz—wr)

Flws) — F(wy) Su (28)

v
i, can he determined from Eq. (28). Then by substituting the resultant dy into Eq. (27),
we can fhen defermine the absonption variation dgg,.

To demonstrate the feasibility of this approach, we simultaneously reconstruct the ab-
sorption and scattering coefficients of a generic slice using simulated data. The simulation
geometry is similar to the experimental geometry shown in Fig. 2. A 1x1x 0.3 cm? slice of

fto = 0.04 e~ and ), = 12.0 em™ is placed at (1, —1,3) om. The source is at (0,0,0) cm
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and the homogeneous background hias optical properties ofi goo = 0.02 em™!

and pl, = 8.0
cm~'. Note that the slice has both absorption and scattering variations with respect to the
homogeneous background. The total and background diffuse phioton densify waves at 2,=
5 ¢m are calculated for f = 70 MHz and f = 140 MHz using the finite difference methad.
Thie reconstructed images are shown in Fig. 11 (b} and (¢). The reconstrncted absorption
and scattering coeflicients are du, ~ 0.025 ¢cm™" and dp) ~ 3.32 cm~'. Wa find that this

approach provides simultaneous estimates of the absorption and scattering coefficients with

a reasonable accuracy.

B. Extraction of Background Optical Properties

Tmiage reconstruction requires knowledge of the optical properties of the homogeneous
background medinm. For example, the complex spatial frequency m = [k2 —(27)%(p?+¢%)]'/2
in Bg. (23) depends on the incident photon density wave number kg, and ko in turn depends
upon the absonption and scattering coefficients of the background turbid medium (e.g.,
Ky = [i—vptan + i w)/Do]'/?). Ideally we would like to determine the background optical
properties from a single data set measured on a heterogeneous medium. One simple way to
achieve this goal is to fit the hetevogeneous data set with a homogeneous model to obtain bulk
average values of thie optical properties. We find that the results for this case are generally
unsatisfactary. Fig. 12(b) shows the total photon density wave ®(r) (the amplitude, for
example) fromi thie absorbing slice experiment where the detector was scanned along a line
symmietrically with respect to the source. When fitting all the data points with a simple
homogeneous model, we find that the resnltant absorption and scattering coefficients are
/L',%ﬁz ).012 em~' and ;;;{)M:G.QT em~', while the expected values for 0.75% Intralipid are
1a0=0.020 cm~" and p';=7.30 em™'.

We can improve the results by considering the symmetry of our detection scheme. As we
recall (see Fig. 2}, our scanning geometry is minmor symmetric with respect to the source. In

Fig. 12{a), we project the 3-T geometny into 2-1 to re-emphasize this mirror symmetry. If the
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medium is homogeneous, the data should hie symmetric with respect to source; ifithe medium
is heterogeneous, the left-right symmetry will be broken. This broken symmetry: enables us
to identify the data points which are mostly perturbed by the inkiomiogeneities. Since the
phase of diffuse photionr density waves is not as sensitive to the absorption variation as the
amplitude, it is safe to use only the amplitudes of the photon density waves in identifying
the most perturbed data points from the symmetry consideration. If the left-right difference
in amplitude signals is greater than the system noise level, we call those data points the
maost pertunbed data points (See Fig. 12(c)). We then exclude these perturbed data points,
and fit the rest of data points (both amplitude and phase) to a homogeneous model (see
Fig. 12(d)). We find that resultant optical properties are indeed improved, e.g., pf = 0.015

’

Vand wf* = 7.23 em™', where the inaccuracy decreases from ~40% to ~25% in f14

cmi” s

and from ~18% to ~2% in .

VII. SLAB AND SEMI-INFINITE GEOMETRIES

Recall thiat the total photon density wave ®(r) for a turbid medium with boundaries is

given by Rq. (14), i.e.

(1) = ﬁ;{[ﬂ@n’) G(r,v) &r' -+—t],fT\(r’) G(r,r') &

+ {J[:an, ) 2200 () 24T gar (29)

On the surface ofi the tunbid medium, the diffuse photon density wave satisfies the zero

partiol current boundary condition [25)

dd(r)

v N Repr 2D 80(r) —
(T)-(;D)I + l—”ﬁj?TL Bl 0 an’ = ——a@(r) y (30)

for r on the surface .




. i~ . . . . 1-R,
Here 7' is the surface normal painting outward from the scattering medium, o = ﬁ?@lﬁ%ﬁ
, R,
where R, is the effective reflection coefficient 2. Using this zero partial current boundary,
condition in Eq. (29), we obtain a general solution for the tatal diffuse photon density wave

®(r) in a finite turbid medium:

¢(r) = EL(;

IS G(x,r') d®' + [T} G(r,v') d*r’
v v

— [O(') [a G(r,x") + XEE] 44" (31)
S

How the scattered wave is related to the heterogeneity function in this case? As we
discussed at the end of Section III, the surface term (the last term in the above equation)
depends on the total photon density wave ®(r), and therefore the surface term includes
both an incident wave component and a scattered wave component. Analytic separation
of the incident wave component from the scattered wave component in the surface term is
generally, not feasible though perturbative approaches may be used approximately.

The approach we take here is to find an appropriate Green’s function so that the surface
term is zero by necquiring

: dG(r, 1!
o Gmr') + %’7}2 =0, r is on the surface. (32)
1

Note that this boundary condition, as we discussed in Section III, is naturally satisfied for
an infinite turbid medium (no photons reach the infinity). By requiring the Green’s function
fo satisfy Fq. (32), we then have the total photon density wave ®(r):

(o) = % S(") Gx,x') P + /T(r') G(r,r') &, (33)
v

0 i

from which we can obtain the scattered wave @, (r):

2The exaat expression of Rqry was derived by Haskell, Tromberg and their coworkers [25]. An
approximate expression offered by Goenhuis and coworkers [26], is in agreement with the exact
Ry within 10%, Tlle approximate expression is Regp = — 1440172 + 0.710n"! + 0.668 + 0.06367

wliere the relative index of refraction 1 = nip yurbid [Thout,ain-

21




B, (r) = B(r) — Bo(n) = / T(r') Qo o) d*n’ . (34)

Our task is to find the appropriate Green’s function whichi satisfies Bq. (13) and the

boundary condition given by Eq. (32), i.e.

(V2 + k)G (r, ') = —4(r,1') . (35)
and
aG(r,t") + —H(’g;;r’ =0, for n on the boundaries. (36)

We expect the Green’s function for a finite medium to include the Green'’s function in an
infinite medinm Gy(r,r’), and an additional term Gy, (r, r') which results from backreflections

at the houndaries, i.e.
G(r,t') = Gy(r,r') + Gy(r,1") (37)

wihiere Golln, i) = EPlkale=r') & (1 1) is required to satisfy the homogeneous Helmholtz
, g

4|r—rt|

eqguafion:
(V2 4+ E2)Gp(r,r) =0, (38)

and the following boundary condition:

aG H (r . n")
an'

AGy(r, 1)

£ -], for r on the boundaries.  (39)

« G},J(B,D,) + = —-D()ﬂ G‘g(r,n') +

A. Slab Geometry

Boundaries of arbitrary shapes arve in general difficult to incorporate into the solution of
tHe phinton diffusion equation (Eq. (14}). Hene we consider a slab geometry shown in Fig. 13.
Within the slab is the scaffering medium and outside the slab is air. This slab geometry
it to approximate the compressed breast configuration which is suitable for clinical breast

lesion diagniosis.
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Suppose the two surfaces of a slab turbid medium are at 2 = 2 and 2 = 2, as showmn in
Fig. 13. Again we use the angular spectrum representation of the Green’s function G (r, r'),

i.e.
Gu(r,1') = / / dpdg Gu(p, g, 2, 2) e > Plmedratu=dl (40)

Substituting this equation in Eq. (38), we find for any given spatial frequencies {(mq),
Gulp, q, 2, 2') satisfies the following I-dimensional homogeneous Helmholtz equation:
o2 91 A , ,
[5-2; +m*|Gu(p,q,2,7') =0, (41)
whiere m = [k2 — (2m)(p? + ¢°)]'/? and Im(m) > 0. The boundary conditions given by
By. (39) for a slab geometry shown in Fig. 13 can be rewritten for the angular spectrum

(jh. C‘P: q. 2, zh) as

Bé‘h(p, q,2,2 = 2))

«Gilp, g, 2,7 = ) — 5 = —(a+1m)Go(p,q, 2,2 = =) , (42)
. OGu(p,q. 2,7 =2 VA
aGlp, ¢, 2,2 = zq) H (P q'a7, ) = —(a+im)Gy(p,¢. 2,2 = z1) , (43)

where Gol(p, ¢, 2, 2') = -2l is given by the Weyl expansion (see Eq. (19)).

2m

The general solution of Gu(p, q, 2, 2) has the form of
G'/y(p,q_,z,z') — 4 eimz' + B e—'imz' ) (44)

The first term represents the wave which is reflected by the lower surface at z = 2y and then
propagates fomwanrd along +z direction, i.e., the “transmission” component; the second term
represents fhe wave whicli is reflected by, the upper surface at z = z4 and then propagates
backward along —a direction, i.e., the “reflection” component. Co.eﬂi—cients A éLnd B can then
be solved using the boundary conditions given by Eqs. (42) and (43). After some algebra,

wie find that
/4' — f\ E]im:: + ﬂze—imz ’ 3= f3€1‘,mz: + fde—-imz , (45)

where fi, fo, fa and fy are given by,




fl _ %(a2+ m?) e—im:(zd+zo): fg — ];)(:Q + 7,’”)2 azm(zd 26) : (46)

fs=-

m;«w

(Cﬁ+ ’L'ITIJ]“ imfzg— z(,]’ f-;ﬁ — %0&2 + mQ) aim:(zd-{-z(,) : . (47)
witlh
fo=— , B=(a+im)?e™e=) _ (o — im)?e imzamm0l (48)
2m;
Finally for a slab geometry, the Fourier component of total Green’s funation Glp, ¢, 2, 2"
in K-gpace is
é(p) q,z, Z’) = é!()(p: G, 2,2 ) + Gh( P, 4,2,2 )
fneim|zz—z'| + fiei’ﬂb(z—}-zl) + fée—imez—z') + fgei‘m(z—z') + f4e—im(z+z"} ) (49)

Using G(p, g, ». 2'), the relation between the scattered wave ®,c(p, q, z4) and the hetero-

geneity function 'f'(.p: qs Zab;) for a slab geometry within “thin” slice approximation is

qA:)SC(Ep:’ q: Zd) . (50)
Az G(p‘a q, zobj)

The 2-1 inverse Fourien transform of T'(p, ¢, zas;) gives the heterogeneity function T'(2, ¥y, Zob;)

T(p) q, zabj) ~

in real x-v space. The optical properties of the inhomogeneities can then be obtained, e.g.,
for absorbing ohjects, we have 8u4 (2, ¥, Zos5) = Tovs (2, Y, 2a05)/ (— 5 Pl (4, y, z,5)); and for
scattering objects, we have di(x, y, zon;) = Tse(2, Y, Zabj)/-(%ﬁa D59 (2, y, 205))-

Using the appropriate Green’s function (Eq. (49)) for a slab geometry, we reconstructed
a 2-D optical image of a slice embedded in a slab turbid medium. The slab geometry is
shiown in Fig. 13 where the two sunfaces are at planes z = 0 and z = 5 cm, respectively.
The source is af fthe origin. A 1.0 x 1.0 em? slice of 0.3 c¢m thick is at (1,-1,3) cm (see
Fig. 14 {a)) and the detection plane is at the top surface of the -slab( z = 5 cm). The

slice bias a highier absorption coefficient than the background medium but shares the same

—1 -1

scaftering coefficient with the background, e.g., feer; = 0.04 cm™ and pj,,; = 8.0 cm
for the slice and oo = 0.02 em~! and ), = 8.0 em™' for the background. The total and
hiackground diffuse photon density waves at the top sunface z=5 cm are calculated using the

finitie difference mefhod.
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The reconstruated absorption image using the appropriate Green’s function (Eq. (49))
for the slab geometry is shown in Fig. 14 (b), and thie reconstructed absorption is dup%,, ~
0.0240 cm~!, which is close to the expected vahie 6" = 0.0200 em™". For comparison,
we also reconstructed the image of the slice using the wrong Green’s function, i.e. the
Green’s Go(r,r') which is only correct for the infinite medium (Eq. (19]). The resultant
absonption image is shown in Fig. 14 (c). We found that the position of the slice can he well
reconstructed by using different Green’s functions. However the image shown in Fig. 14 (c),
wilich is reconstructed by using the wrong infinite Green’s function, has more artifacts than
that shown in Fig. 14 (b), which is reconstructed by using the right slab Green’s function.
Notice that the Green's function for a slab geometry, |G(p, q, 2, 2')| is smaller than the Green’s
function for an infinite geometry ]G’O(p, q,z, 7| simply because we lose photons through the
finite boundaries. When we use the Green’s function of an infinite medium to reconstruct
the image for a slab geometry, the overestimate of the Green’s function is responsible for the

nogier image structures (artifacts) in Fig. 14(c). The overestimated infinite Green’s function

also resulfs in smaller reconstructed optical properties, e.g., the reconstructed value by using

the wrong infinite Green’s function, 4%, ony = 0.0056 ecm™!, is about 4 times as small as the
value 6, = 0.0240 em™" veconstructed by using the appropriate slab Green’s function.

We see thaf the appropriate Green’s function for a slab geometry (Eq. (49)) produces cleaner
images and miore accurate optical propenties than the Green’s function which is only suitable

for an infinite medium (Bg. (19)).

B. Semi-infinite Geometry

A an extension of the above derivatiion, we can easily obtain the Fourier component of
the fotal Green's function GP7i(p, q, z, 2') for a semi-infinite turbid medium. Alternatively
we can start with fhie Green’s function for a slab geometry ( Eq. (49)), then move the
lower boundary of the slali in Fig. 13 to the negative infinity, i.e. g — —oo. Note that

Tmfm) > 0 and therefore all terms in Fq. (49) with e~ "% vanish when zy — —o0. The
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Fourier component of the tatal Green’s function G*™™(p, q, 2, 2| for a semi-infinite medium

at any spatial frequencies (p, ¢) in K-space is thus
G‘semi‘(p, (],Z,Z’) — f(] eim|z—z."] + ﬁfeﬂbv‘: e-—z’m(z-}-z’) ] (:-}1)

Here the coefficients fy and fj¢™ are given by

o +1m 821' magy,

32
o — 1m 63 )

fo= oy JE™ =1y

The first term on the right Hand side of Eq. (51) represents the Green’s function in an infinite
medium, and the second term represents the wave which is reflected by the boundary at
2 = 7y and propagates backward along the negative z-direction. For arbitrary boundaries

the solufion of the Green’s function are in general difficult to obtain.

C. Re-emission Geometry

Tn the previous discussions the source and the detector were assumed to be on the
opposite sides of the inhomogeneity. This configuration is éalled transmission (see Fig. 15
(aj}. Tt is suitable for two-plate soft compression geometry in breast cancer studies, with the
source placed on one plate and the detector scanned over the other plate. Interestingly the
derivation is not limited to this transmission configuration. Recall that dependence of thev
angular spectrum algonithm on the source position is implied in the heterogeneity function
(see Fgs. (11} and (12)). The relation between the heterogeneity function and the scattered
wave measured at the detection plane (see Fq. (25)) does not explicitly depend on the source
pasition. The light source and the detector can be placed on the same side or on the opposite
sidués of the object withlout affecting thie conclusion of the above derivation. Hence, we can
apply the algorithm equally well to anothen geometry - the re-emission geometry (see Fig. 15
(hy) [27,28]. Tni fhie re-emission configuvation, the detector scans in the plane which contains
the source. This could be necessary, for example, in brain function studies. The re-emission
geomietry cauld alsa be useful for studies of large dense breast tissues in which fewer photons

pass through' fhie tissue.
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In the transmission genmetry, we measure the scattered wave propagating forwand away
from the source; in the re-emission geometry, we measure the scaftered wave propagating
backward towards the source. For a re-emission geometry and within a thin slice approxi-
mation, the relation of the heterogeneity function T(-p, g, Za;) In K-space with the measured
scattered wave in the plane z = z; is given by the same equation as for the transmission

geometry (Eq. (25)). Here we rewrite the relation for the re-emission geometry:

A~

- D,e(p, g, 24)
T( G, Zopi) = Asc 2 Y ,
(p & Oby) Az G([), g, 24, zobij)

(53)

where an appropriate Green’s function for an infinite medium (Eq. (19)) or a slab medium
(Flg. (49)) has Been assumed.

Simulations hiave shown the applicability of the algorithm to the re-emission geometry.
Oonsider an absorbing spherical inhomogeneity of 0.5 cm radius at (2, 1, 2) cm embedded
in an otblerwise homogeneous slab turbid medium (see Fig. 15 (¢)). The two surfaces of

the slab are at 2 = 0 em and 23 = 4.0 cm, respectively. The absorption and scattering

1 1

coefficients ofl the sphere ave p,=0.04 cm™" and p,=8.0 em™" while the background optical

i 1

properties are p,0=0.02 om™" and p;=8.0 cm~'. For the re-emission configuration, both
the source and detector are placed on the top surface of the slab, i.e. in a plane at z; = 4
emi. The scattered wave is calculated over a 9 x 9 ¢m? region with x-y steps of 0.6 cm. The
source is placed at the centler of the square scanning region in the detection plane, i.e. at (0,
0, 4) emi. The reconstructed image for the re-emission geometry is shown in Fig. 15 (d). For
comparison we also reconstmict the image of the same object for the transmission geometry.
Tn this case the source is at the origin (0, 0, 0) em, on the lower surface of the slab, with
all other configurations kep’t‘ the same ag in the re-emission geometry. The image is shown
in Fig. 13 {le]. We see that thie image quality in these two configurations is about the same.
The ratio ofithe reconstructed absorption coefficient. for the re-emission geometry to that for
the fransmission geometry is dpf', .., /0o ~ 1.1, The finite object size (as opposed to

a “thin™ slice] might contribute to the small difference in the reconstructed absorption.
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VIII. SUMMARYI

We have presented a full exposition of our recent work thiat employs thie angular spectrum
algorithin for optical diffraction tomography with diffuse phioton density waves. The image
reconstruction becomes practically easy for thin heterogeneities wherein the heterogeneify
function ofl interest is proportional to the scattered wave measured at the detection plane,
ie. T(p,q, Zopj) o< Pec(p, g, 22). We have shown that although this relation is accurate only
for thin inhomogeneities, it provides an approximate short cut for fast, 2-D projection imag-
ing of spatially extended objects. The reconstruction is very rapid, requiring only a forwand
and inverse Fourier transform, e.g., it takes less than 0.2 second on & Sparcl0 workstation to
reconstruct an image of ~1000 pixels. For spatially extended objects, although the recon-
structed optical properties are not accurate, the ratio of thie reconstructed optica'l properties
of. multiple objects are close to the true ratio. In this sense we say that contrast image
can still be obtained by using this algorithm. The feasibility for using this algorithm for
image reconstruction of absorbing and scattering inhomogeneities has been experimentally
demonstrated [18].

We have extended the theory to other geometries including the slab and the semi-infinite
geomefry for hoth' fransmission and re-emission configuration. The theory was confirmed in

simulation experiments.
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APPENDIX A: CONVENTIONS USED IN THIS PAPER REGARDING

FOURIER TRANSFORM

The conventions regarding the forward and inverse Founier transforms are as follow.
Consider a function f(z) in 1-dimension:

Forward Fourier transform:
F(p) = /f(.L) e dg (A1)
Inverse Fourier transform:
flz) = /F(q) e P (i (A2)
and fthe d-function is therefore given by
d(p) = ﬁeigﬁ “Pdz d(z) = / e TP dp | (A3)

Using these conventions, we eliminate the 27 factor outside the integral of forward and

inverse Fourier transforms.

APPENDIX B: THE WEYL EXPANSION OF GREEN’S FUNCTION

Comsider an infinite thinbid medinm. g, and g, are respectively the absorption and

scattering coefficients. The Green’s function Gy(r, ') satisfies the following equation:
(V2 + 1Y Golr,v') = —6(x, 1), (B1)

where ko = [(—vptag + 7 w)/ D] with Tm(ky) > 0; Dy = v/(34), is the photon diffusion
. s0

coefficient. The solution of the Green's function is [19]

, r:iko|r—h'|
Golr,¥') = ————- . B2
The Green’s function is related to its Fourien transform by
Goln) = // Golp. g, n) e 27 0s¥etn2) gy go dn, | (B3)
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where we assume r = 0 without losing generality and {p,g,n) are the spatial frequen-
cies. Plugging Eq. (B3) into Eq. (B2) and using the integral expression for thie d-function

(Eq. (A3)), we have

[T Golp, g, 1) [ — (20252 + ¢° + n?)Je™ 2" G=+atns) dp dg

= — [[J e~ 27 (pmtavtnz) dy dg dm; . (B4)

Without a rigorous proof, we can obtain the Fourier transform of the Green’s function just
by laoking at both sides of the above equation, 1.e.

. - 1 B 1 "
Golp,g,m) = (27)2(p® + 2 +n2) — kZ ~ (27m)?n2 —m? (B5)

whlere m = [k2 — (2m)2(p? + ¢2)]'/? and Im(m) > 0. Eq. (B3) can then written as
. , —i27 nz

Go(r) = // dp dq e~ (et ay) /m dn , (B6)
The integral over spatial frequency n can first be done by “pole” structure analysis. There
are fwo poles in the integral aver n as shown in Fig. 16. For z > 0, we require I'm(n) < 0
ta ensure thle convergenoce of the integral over n. Therefore we choose the pole in the lower
halfi space (Fig. 16(a)), e.g., n = —m/2m (recall Irn(m) > 0 which gives Im(n) < 0). Note
that the integral is along thle clockwise direction which gives us an extra minus sign. The

resultant integral is

/ a—ier na / 9 i e—iQﬂWM n=—m/2x 7 imz (B?)
: in = —2mi-—~;7—+ = 5. € :
IR O D N CIE O 2m

Similarly, for 2 < 0 we requive 7rmu(n) > 0. Therefore we choose the pole is in the upper half
space (Fig. 16{(h)), e.g., n = m/2n. The integral is along the counter-clockwise direction so

thiere is nio extra minus sign in this case. The resultant integral is thus

/ @—iQ:r n ] o i e—i27mz n=m/2r 7 s (BS)
- - Un = 2Nty — € . ‘
2r)2(n + 2)(n — =) C2n R + =) 9

Clombining Fgs. (B7) and (B8], we have the general expression for the integral over n:

8—1’2:7 ny i i
/0———0—”“—, dn = %Pﬂnlﬂl . (Bg)

27 )?n? — m?
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Substituting this equation into Bq. (B6), we thien end up withl the Weyl expansion of the

Green’s function:

Golr) = / / dp dg e~ atan) L gimlzl (B10)

2m,
where m = [k2 — (2m)2(p? + ¢%)]'/? and Im(m) > 0.
The Weyl expansion represents the superposition of elementary. harmonic waves in the
2- and y-directions (e_i?‘"(””qy)); the harmonic waves exponentially attenuate in the z-

direction away from the plane z = 0 which contains the source. The harmonic waves and

ieim]z!

the aftenuation factor are so combined that the double integral in Eq. (B10) aver all

2

fHe spatial frequencies (p, q) yields the elementary damped spherical wave on the left-hand

side of Fg. (B10), i.e., Go(r) = €*o" /(dm 7).
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FIGURES

Scattered \_

Incident

FIG. 1. In the presence of optical inhomogeneities, the spherical wave front of the incident
wave is distorted. The total photon density wave is the sumn of the incident wave and the scattered

wave.
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RIG. 2. Ilustration of 2-D geometry which §ve consider for the image reconstruction algorithm
based upon K-space spectrum analysis. The scattered wave ®s.(z,y,24) (or its spatial Fourier
component és_cﬁp, q,zg) is determined at the detection plane z = zg by scanning the detector
over a square negion. Without losing generality we assume the optical heterogeneities are located
Helow thle detectionm plane at z = z4. A point source can be placed anywhere in the turbid
medium. In practice the point source and the detection plane are either on the opposite side of
thie Weterogeneities (transmission) or both on the same side of the heterogeneities (re-emission).
In this figure th?é point source happens to be placed at the origin of our coordinate systemn for

demoustration of a transmission measurement geometry.
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FIG. 4. (a) and (b} respectively show the amplitude attenuation and phase shift associated

witls the Weyl expansion in K-space versus spatial frequencies (p,q). Note in (a) the z-axis is the
log: of thie amplitude of e {22=%) /my; in (b) the z-axis is the phase of e™(za=%) frn, in degrees. (c)
and (d) shiow the amplitude attenuation and phase shift versus the depth zg — z; for given spatial

frequenaies (0.1, 0.1) em™' (solid lines) and (0.5, 0.5) cin™" (dashed lines).




T(p1qazobj)

— Usc(psqszd)

Detection

Source -;of-
Plane

Z=0 Z obj Z=Z 4

FIG. 5. The heterogeneities are considered to be thin which locate within a thin slice at z = 244,
in parallel to the detection plane. The heterogeneity function within this thin slice is approximately

uniform and tlle heterogeneity function is zero elsewhere.
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FIG. 6. (a) shaws the reconstructed absorption coefficient versus the depth estimation. The
data points in (a) are normalized by the absorption reconstructed at the depth where the object
is, e.g. zq — Zp; = 2 om. (b) shows the ratio of reconstructed absorption of two spherical objects

versus thie depth estimation. Although the ratio is only approximately reconstructed (e.g., the true

ratio is 2), the natio s relatively insensitive to the depth estimate.
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FIG. 7. Tlmstration of the dependence of reconstructed images on the estimated depth. The
detection plane is at z=5 om and an absorbing object shown in (a) is at (2, 1, 3) cin which is 2 cin

below thie detection plane. (b-f) are the images reconstructed with an estimated depth respectively

at 4 e, 3 em, 2 ¢m, 1 e amd ( cm.
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FIG. 8. INustnation of how (o obtain a 3-D image from two projection images reconstructed

from two measurements along two arthogonal directions. Image 1 from the measurenent in plane

I provides thie depth information for image 2 from the measurement in plane 2.
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FIG. 10. (a) shows the exact x-y position of a thin absorbing slice. (b) shaws the surface plot of
thie reconstructed absorption variation (64476¢) using the angular spectrum algorithm. (c) illustrates
the reconstructed 2-D phiotographic image of this slice. Algreement between the reconstructed

position: and the exact position as shown in (a) can be readily found.




Thin Slice
Absorption Image Scattering Image

(@ (b) (c)
RFIG. 11. (a) shows a thin slice object at (1, -1, 3) cm. The slice is 0.3 ¢m thick with its 1
x L em? surface in parallel to the detection plane at z; = 5 cm. The scattered waves at two
modulation frequencies (70 MHz and 140 MHz) in the detection plvzme at zg = 5 ci are calculated
using finite difference method over a 9.3 x 9.3 cm? region with x-y steps of 0.3 cm. (b) and (c)
shiow the abisorption and scattering images reconstructed simultaneously using the dual modulation
frequenay approach. The recounstructed position of the slice is close to its true position and the

reconstruated absorption and scattering properties are close to their true values. See Section VI(A)

for details.
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FIG. 12. (a) sliows a 2-D version of the experimental geometry in Fig. 2. The detector scans
along a line from left tb right symmetrically with respect to the source. (b) shows the raw data
measured on. a heterogeneous medium by scanning the detector along a line from left to right. (c)
shows the most perturbed data points far which' the left and right differences are greater than the
noise level of our detection system {e.g., 2.5 mV in this case). (d) show the rest data points after

thie most perturbed data points are filtered out. Thie background optical properties can then be

obtained by fitting the data points shown in {d) to a homogeneous model.




~

Air fn AZ

Z
- Detector d
Scattering
Medium %E‘ Source
> X
Z
Air 0

FIG. 13. A slab geometry is considered for the boundary problem. The slab is infinite long
but lias a finite tlhlickness, e.g. z4 — 29. One surface of the slab is at plane z = 25 and another
surface is at plane z — z4. The turbid medium is between these two planes and outside the slab
is non-seattening media such as air. This slab geometry is quite suitable for a compressed breast

aonfiguration in clinical studies.
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FIG. 14. (a) shows the position of a 0.3 cm thick, 1.0 x 1.0 cm? absorbing slice at (1, -1, 3)
am in a slab turbid medium. The two surfaces of the slab are respectively at planes z—0 ¢m and
2=5 em. The source is at origin at one of the slab surface (z=0 cin) and the detector scans at the
othier surface (z = 5 cm). The reconstructed absorption image using the “slab” Green’s function
(Eq. (49)) is shown in (b). The reconstructed absorption image using the wrong “infinite” Green’s

funation (Eq. (19)) is showm in (c).
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RIG. 15. {a) shows thle (ransmission geometry. The source is at the origin and the detector
seans inia plane at z — z4. (b) shows the re-emission geometry where the source is at the center ofl
thie detection plane at z = 4. (c) illustrates a spherical absorbing object at (2, 1, 2) cm embedded
within a slab turbid medinam. The two surfaces of the slab are at zp = 0 cm and zg = 4.0 cm,
respectively. For both transmission and re-emnission geometries, the scattered waves in the detection
plane at z; = 4 am are caleulated using the exact DPDW solution for a slab geometry over a 9 x 9
em? region witl x-y steps of: 0.6 cm. The reconstructed immages for the re-emission and transmission
geometries are shiown in {d} aud (e), respectively. The two images look similar. We also found that

the reconstruated absorption coefficientls are also about the same under both geometries.
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FIG. 16. There are two poles for the integral over n in Eq. (B6). (a): for z > 0 the singularity,
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Abstract:
A Clinical, compression-plate diffuse optical imager is used to determine the bulk optical
properties and blood saturation in breast tissue of volunteers and in tissue phantoms.
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Diffuse optical tomography (DOT) in the near-infrared (NIR) is currently emerging as a viable means for breast
tumor imaging and specification[1]. This method relies on optical properties and biological factors such as the blood
oxygen saturation to enhance tumor specificity and sensitivity. It is important to study the dispersion of normal
breast bulk optical properties in order to asses the contrast expected from tumor tissue. For example, various factors
such as age and the menstural cycle are expected to influence the optical properties[2] and should be characterized.

In this study we employ a clinical, compression-plate optical breast imager for measurements. The instrument uses
three wavelengths - 830nm, 786nm and 750nm, and employs a scanning, fiber-coupled PMT detector for detection.
The lasers are coupled to sixteen different source positions and a dicon multiplexer is used to select the source position.
In our clinical measurements so far we have been using single source position due to time constraints. The lasers
are modulated at 140MHz to produce a diffuse photon density wave (DPDW) in the medium. The patient lies in
the prone position and her breast is inserted into a small tank filled with a matching solution of Intralipid through
an openning on the bed. The detector scans along the output plate glass surface, and the source is attached to a
compression plate which applies a gentle compression to the breast. Usually the range of compression is 4.5cm to
7em. It takes &~ 15 minutes to acquire data from a 9.6cm (x) by 4.8cm (y) scan region with 153 (17x9) points. We
take two sets of data for each patient; 1) tank filled with Intralipid only , i.e without the breast, which allows us
normalize for instrument response, 2) tank filled with Intralipid and the patient breast. For the last six months we
have been acquiring data at the Hospital of University of Pennsylvania from volunteers with normal breasts.

In order to test the feasibility of our instrument and approach we also performed phantom measurements using
balloons filled with different concentrations of ink and Intralipid. The balloons were inserted into the Intralipid tank
to fill a volume which is similar to the average breast volume obtained from the clinical trials. A large fraction of the
balloon was kept above the Intralipid level to simulate the chest wall. For analysis we follow the same procedure as
done with the healthy patients. We have tested nine phantoms with different optical properties, different background
optical properties and different volumes. Here we show the results from 786nm. The results from the other wavelengths
are comparable.

To estimate bulk optical properties we solve the forward diffusion problem numerically using a finite difference solver
for arbitrary heterogeneities in the domain [3, 4]. To obtain the bulk properties we specialize this approach , segmenting
the image volume into Intralipid background and breast volumes (see fig.(1)). During the measurement we obtain an
outline of the breast in the x-y plane, and the y-z plane in order to define the segmentation geometry. The top x-z
segmentation plane wall, however, is assumed to extend far above the Intralipid level in the tank and thus models
the rest of the chest. Therefore, we end up with a three dimensional T-shaped heterogeneity that approximates the
breast volume as illustrated in fig. (1) . The relevant boundaries are also shown.

An inverse solver based on this solution which in its simplified version can be used to obtain the bulk properties
of the heterogeneity volume was developed. First we divide the heterogeneous data by the background data giving
a “normalised” DPDW. The solver is then initialized with the background properties, convergence is tested as the
squared difference between the measured and calculated normalized DPDWs . If it did not converge , then the optical
properties are updated according to a rule based on distorted born iterative method and the forward solution is
tested for convergence once more. The process is repeated until either a particular number of iterations is reached or
a certain criterion in the error is achieved. Here we simplified this process for the bulk properties by summing up the
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weight matrices (essentially averaging) in the solver for the heterogeneity region and by not allowing the properties
of the homogenenous background region to change (as opposed to calculating every single voxel in the domain). We
allowed for a maximum of ten iterations and stopped earlier if the error falls below 107%. We find that this criterion
is generally adequate for our numerical simulations and phantom tests.

To illustrate our results, we show four sets of data from balloon phantoms as follows where the balloon volume and
other parameters were kept constant but the optical properties were changed. The background properties were 0.05
and 8 cm™! for the absorption (u.) and scattering (u5)coefficients respectively.

Expected (cm-1) Calculated (cm-1)
Absorption Scattering Absorption  Scattering
0.05 12 0.0587 13.54
0.05 4 0.0575 4.90
0.035 8 0.0446 8.64
0.07 8 0.0696 9.26

We also calculated the optical properties for these phantoms (total of nine) using a semi-infinite fit for the data from
a strip of width = 1.5 cm at the top part of the scanning region. This geometry is commonly employed and was
used earlier by us [4] to obtain estimates of the breast optical properties. We believe that the main drawback of the
semi-infinite model is that it ignores the multi-layer boundary structure such as the tissue -Intralipid boundaries. It
tends to underestimate p4 and both p, and p} “saturate” at higher values of absorption and scattering.

The results from both methods are shown in fig.(2) where we plot the mean calculated properties vs the expected
values from multiple measurements for each phantom. The error bars are derived from the standard deviations from
the expected values. We see that the correlation with the expected values for the finite difference method is within
10% whereas for the semi-infinite model it is worse than 45%.

We then apply this method for the data from healthy volunteers. Fig. (3) shows the histograms of optical properties
and also the blood saturations for seven of these patients. The optical properties are well within the generally accepted
values. The blood saturation values are also generally satisfactory[6]. The very low saturation value in one case is
probably due to a systematic error.

We are currently acquiring more data with healthy patients and we still have a large data set obtained that needs to
be analyzed. The model is also being tested thoroughly with more robust phantoms. This work will be presented in
April.
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Fig. 1. Models used for finite difference calculations; background (left), breast (middle) and balloon phantom
(right) are shown with the corresponding boundaries. The shaded regions show the estimated breast volume
in the segmentation process.
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Fig. 2. The mean calculated absorption (scattering) coefficient vs the expected absorption (scattering) coef-
ficient is shown on the left (right). Solid (dashed) lines show the finite difference (semi-infinite) calculations.
The equality line (dotted) is also shown. The error bars are obtained from the standard deviations from the
equality line.
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Abstract: A diffuse optical tomographic imager is described. It employs a large area CCD to
collect large data sets (10° measurements) from 32 sources rapidly (30s). 3D images of breast
tissue phantoms exhibit ~5mm resolution.

©1999 Optical Society of America
OCIS codes: (179.3830) Mammography, (170.5270) Diffuse Photon Density Waves, (170.3660) Light Propagation in
tissues; (170.5280) Photon Migration

1. Introduction

Diffuse optical tomographic (DOT) techniques have paved the way for several groups now focusing on clinical
research[1]. However several challenges remain for developing a clinically useful tool. One of the main
experimental challenges is to increase the speed and size of the data set collected. Coverage and resolution demand
larger data sets and yet patient movement and physiologic noise necessitate fast collection speeds. A generally held
view is that DOT techniques may be limited to between 2 -10 mm resolution in deep breast tissue. One might
naively assume that a similar sampling density would be sufficient. For typical breast volumes (~1000cc) this would
necessitate between 10° (1cm resolution) and 10° (2mm resolution) measurements. However some surface features
have sub millimeter structure and are near the high sensitivity regions of the reconstruction volumes. For these
surface structures it may be advantageous data set sizes of greater than 10°. Most clinical prototypes thus far have
much smaller data sets, i.e. in the range of 10" to10°. We therefore anticipate the potential for machines with larger
data sets and rapid aquistion to substantially improve upon existing optical mammography devices.

A natural tool for spatially dense light sampling is a CCD. There has been some outstanding work in the biomedical
optics field using and developing CCD systems for diffuse light diagnostics, though these have not yet applied to
clinical mammography. Time-resolved (80psec resolution)/2D-space-resolved measurements have been carried out
by Alfano and coworkers[2,3]. Using this instrumentation they have localized a fluorescent object in chicken breast,
and they have begun to work on the general image reconstruction problem in phantoms. In the frequency domain
Sevick-Muraca's group has adapted homodyned multi-pixe! RF phase-sensitive camera technique for deep-tissue
imaging [4,5]. They have measured images of DC/AC amplitude and phase of a tissue phantom with absorbing and
fluorescent heterogeneities. They have even used the system for investigation of in-vivo and ex-vivo animal models
with mammary cancer. Boas and coworkers have also recently applied CCDs in remission geometry’s; in particular
they use a single source and simply measure the diffuse light amplitude in remission[6]. In total this work, and
related reconstruction work with DC data [7], demonstrates the feasibility of using CCD’s to collect data and as well
as the surprising utility of DC amplitude only data for image reconstruction. To this end we have developed clinical
prototype DOT imager using a larger area CCD camera. This CW imager will be integrated into a existing slower
scanning RF imager that we are currently employing to study bulk breast tissue optical properties.

The system we have built introduces several new ideas. Most important are the 32 different transmitted image
projections of the illuminated volume. This is crucial for tomographic analysis of the data. In Figure (1) we
illustrate our new compression plate, intralipid tank and CCD imaging system. The compression plate and Intralipid
tank have been mechanically redesigned compared to our previous system. In particular the positional repeatability
and to stability of the moving compression plate relative to the detection window were improved. In addition a
modular viewing window permits the use of diffuse or antireflective transparent windows. Our CCD consists of a
1300x1340 pixel array in an area of ~2.6cm x 2.6 cm. The CCD chip is read by a 16 bit A/D and thermoelectrically
cooled (-40°C). We have checked the light transmission through a range of tissue phantoms of different thicknesses
in order to ascertain the signal-to-noise of the CCD system. We chose a fairly large source-detector plate separation
range (~5-8cm), and made an Intralipid tissue phantom with p, 0.05 em? and p, =10 ecm™. The raw CCD
measurements were binned in 8x8 square units to give an equivalent pixel size of 2mm on the breast surface. Using




Figure 1. CCD imaging
system and Intralipid tank with
movable compression plate. The
modular viewing window can be
either a diffuse resin window
(1:=0.02cm™, 1 ’=10cm™) or a
transparent window. A 10-mW,
809nm, laser light source is
optically switched between 32
fibers arranged in a hexagonal
lattice within the compression
plate. An average of 4mW is
delivered to the fiber tips. A
50mm F#=1.4 lens images the
detection plane on to the CCD
chip. Ambient room light is
eliminated using a RG-9 optical
glass filter and light shielding
materials.

known detector efficiency and gain the image was converted to photoelectron values, and the signal-to-noise was
assumed to scale as 1/5qrt(Nphotoetectrons). From our clinical measurements we know that most breast compressions are
~ 6cm. However we find that even for a larger breast compression of 7 cm we can collect ~3x10° light
measurements with a S/N of better than ~1% over 100cm? area. With 32 available sources we reach a total of 10°

measurements in ~30 seconds.

Figure (2) shows the results from a measurement made with two (T, and Tg) absorbing 5x5x10 mm targets in a
suspension of Intralipid with a source detector plane distance of 5.5cm. The source plane is at y=0 and the detector
plane is at y= 5.5cm with x-axis oriented horizontal and z-axis oriented vertical. The bulk intralipid tissue phantom
had p, =0.05 cm™ and p, =10 cm™ and the targets (T, ,Tp) had (u, =0.3 em™ ,u, =0.2 cm™) respectively. The centers
of the two objects were located in the middle of the intralipid tank with (T,x=-0.5,y=2.5,z=0) and
(Tp:x=1.5,y=2.5,z=0). T, aligned along the z-axis and T} aligned along the x-axis. To demonstrate the tomographic
capabilities of the data, 3d images were reconstructed using a rytov perturbation approach with ART matrix
inversion. For these preliminary studies computing restrictions necessitated that we use a subset of the available
data. In particular the central six sources were used located at z=0 and spaced evenly at 1.4cm steps in the x
direction. The detectors were then binned to 4.6x4.6 cm area measurements covering a ~4x10cm field of view with
19 positions in x and 11 positions in z. A total of 1254 measurements were available. From this total detector set a

Figure 2. The central
6x2.5x2.5 volume (x,y,z)of
the entire 10x5.5x4cm
volume. Two slices of the
3D p, image maps are
shown, a)xz plane at
y=2.5cm for the phantom
b)xy plane at z=0 for the
phantom, c)xz plane at
y=2.5cm for the
reconstrution d)xy plane at
z=0 for the reconstrution, €)
e)Cross sections at y=0,z=0.
F) cross section at x=-
0.5,2z=0.




reduced data set was selected using a noise threshold defined relative to the peak light intensity for each source.
Ultimately 1001 total measurements were used for the reconstruction’s. Using rytov absorption weights, the
10x5.5x4cm (x,y,z)volume was meshed in 2.3x2.3x2.3mm voxels. An Algebraic Reconstruction Technique (ART)
was used to invert the measurements an obtain the 3D ., images. Figure 2 shows the central slices in the xz plane (at
y=0) and the xy plane (at z=0) for the (a&b) actual L, values and (c&d) the reconstructed values. For quantitative
comparison the 1 dimensional cross sections €) in the x direction at y=0,2z=0 and f)in the y direction at x=-0.5,2=0
are shown. Note that the orientations of the two objects in the xz plane are observable. Thus the resolution in the xz
plane is ~5mm. The reconstructed values are ~2 times smaller than expected. This can be attributed to the reduced
(~1cm) resolution in the y direction that spreads the optical weight over a larger volume leaving the total integrated
signal 8y, *volume the same. It is anticipated that reconstruction’s that utilize more of the available source views
will improve on the resolution in the y direction and correspondingly the quantification of the optical properties.

To test the effect of data size an image quality
criteria is needed. For our comparison we use a
standard image error function (ref) applied to
the central xz plane. In particular we
define
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where X, Y are the dimension in voxels of the
reconstructed image, ¢ is the expected optical
property, and r is the reconstructed optical
property. The data size is altered by sparsely
selecting the pixels while leaving the field of
view constant. Figure 3 shows the error as
function of data set size. Here the true noise
threshold truncated data size is used. Note that
we are continuing to improve the image quality as we increase are detection density to 4.6 mm. It is expected that
with more heterogeneous samples the effects will be even more pronounced. Future work will extend this analysis to
larger data sets and more complex tissue phantoms.
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Figure 3. Image error (r) as a function of the number of
measurements used in the3D reconstruction.

In conclusion we have developed a clinical prototype DOT imager using a larger area CCD camera that records 10°
measurements in 30 seconds. This is a significantly larger data set obtained more quickly than typical existing
clinical optical mammography machines. Preliminary 3D reconstructions of tissue phantom demonstrate ~5Smm
resolution with a limited data set. We will integrate this system into a existing slower scanning RF imager that we
are currently employing in the clinic.
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Abstract: A new integro-differential equation for diffuse photon density
waves (DPDW) is derived within the diffusion approximation. The new
equation applies to inhomogeneous bounded turbid media. Interestingly, it
does not contain any terms involving gradients of the light diffusion
coefficient. The integro-differential equation for diffusive waves is used to
develop a 3D-slice imaging algorithm based on the angular spectrum
representation in the parallel plate geometry. The algorithm may be useful
for near infrared optical imaging of breast tissue, and is applicable to other
diagnostics such as ultrasound and microwave imaging.
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1. Introduction

Tomographic imaging of deep tissues with diffusive waves makes possible functional
imaging based on novel optical contrasts derived from tissue chromophores, structure and
metabolism [1-3]. The near-infrared spectroscopic properties of breast tumors for example,
have been found to differ from adjacent normal tissues. Such spectroscopic signatures hold
promise for increased tumor detection sensitivity and specificity [4-10]. In order to take full
advantage of these new contrasts it is critical to develop high fidelity three-dimensional
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optical imaging algorithms for diffusing light in turbid media such as the breast. To this end a
number of image reconstruction schemes have been developed [11-13]. Many of these
schemes use integral equations based on Born or Rytov approximations to generate a set of
linear equations which are then solved to update the absorption and scattering coefficients
associated with each voxel in the reconstructed volume. The integral formulation is attractive
because of its speed. However, to our knowledge most of these formulations ignore terms
involving gradients of the light diffusion coefficient [14,15] Although this approximation is
often reasonably accurate, a recent paper [17] has established the importance of this gradient
term, showing that its neglect is responsible for cross coupling between absorption and
scattering images.

In this paper, we derive a new integro-differential equation for diffuse photon density
waves (DPDW) within the diffusion approximation. The new equation, which is developed
for bounded turbid media does not explicitly contain any terms involving gradients of the
light diffusion coefficient. We then use this integro-differential equation and develop a
theoretical inverse scattering algorithm for three-dimensional image reconstruction. The
theoretical framework follows the principles of near-field diffraction tomography based on
the angular-spectrum representation; in particular we show how to develop three-dimensional
slice images of a breast compressed between two parallel plates. The technique employs a
series of plane diffuse photon density waves with different modulation frequencies. For this
set of plane incident diffusive waves, the algorithm requires two-dimensional FFT operations,
and a one-dimensional matrix inversion. Thus the method is non-iterative in two space
dimensions and is therefore computationally fast.

2. Integro-differential equation for diffuse photon density waves

We begin with the equations satisfied by the diffuse photon density, ® and the diffuse
photon flux density, J [18]

—
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Here, @  denotes the modulation frequency of the source intensity, £, and 4 : are the
absorption and transport scattering coefficients of the bounded turbid media, ¢ is the velocity
of light in the medium and S, (F, a)) ,S, (¥, @) are the monopole and dipole moments of the

intensity modulated optical source respectively. From these equations we eliminate the

photon flux density and obtain, after a lengthy calculation, the following wave equation
involving only the photon density function

(V2 +1,2 Y00, 0)=3 7 9. 0(F @)+ V | Fova(r, o)

s

30U -, e N
s 5 (7. 0) |- 3 (F)S, (7, @)

# ®)

V.
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Here

Y 1/
kd2 = 3ﬂs(%_ﬂa) (4)

is the square of the complex wavenumber k,. The bar over a physical parameter denotes

spatial average of that parameter. Notice that for unmodulated source intensity (the
continuous dc domain in contrast to the frequency domain), the photon density is a non-
propagating damped wave. The wave number in this case is purely imaginary. For frequency
modulated source intensity, the wave number is complex and the photon density acquires the
characteristics of a damped or attenuated wave.

Because of its differential nature Eq. (3) will admit many solutions and boundary
conditions are necessary to obtain the physical solution. The problem of finding the proper
boundary condition is complex and is generally further exacerbated because the diffusion
approximation is not valid near the boundary. Inspite of this basic difficulty, diffusion theory
is used widely due to its simplicity and the applicability of numerous analytical and numerical
techniques for its solution in finite domains of arbitrary geometry. Approximate boundary
conditions are generally adopted which have been shown to be fairly accurate. Here, we adopt
the general boundary condition [19]

A - J(F,0) = o®(F, ). (5)

The value of ¢ can be defined based on boundary considerations or taken as a fitting

parameter for a given interface. In Eq. (5) A is the unit outward normal to the boundary
surface. Using Eq. (5), it is now possible to transform Eq. (3) into an integral equation, the
solution of which will provide one with a physical picture of the interaction of the diffuse
photon density wave with the turbid media. The basic interaction of light with the molecules
of the turbid media is already included in the absorption and scattering parameters. The
determination of these material parameters is at the heart of the optical modality for cancer
diagnostics. The integral representation forms a basis for extraction of these parameters from
measurements of the diffusion waves at the boundary. We next derive the integro-differential
equation using Eqs. (3) and (5).

We follow the standard Green's function technique for the derivation of an integral
equation from a partial differential wave equation [20]. However, we deliberately choose a
simple Green's function corresponding to the operator on the left hand side (L.H.S.) of Eq.
(3) that satisfies the equation

(V2 +k,° 6 (7.7, )= -478(F ), (6)
and is given by
.. exp(ik,\r =7 7
Gd(r,r',w)=—3;i|r—1, @
F 7]
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with

Here Im(k,) > 0. Notice that our choice of an infinite space Green's function will not limit
in any way when we consider finite domains; finite medium effects are properly treated by
the boundary integrals. If we now multiply both sides of Eq. (3) and (6) by G, (7,7, ) and

(D(?, a)) respectively and subtract the resulting equations from one another and use a
number of standard Green's identities, we obtain

DO(F, w) = 3, _[So(?’,a))Gd(F,?’,w)d3‘r"+iji(7’,(0).V'Gd(?’,?’,a))d3?’
4z 4z,

+ Z%j(mzcd (7,7, @) + VG, (7,7, 0) )O(F, w)dS’
N
S [, (7) - BIOF 0GP
4z,

L [Al) 2 )l 7, ) VG, (7, P)d’r. ©)
ary, w1 (r)

In deriving Eq. (9), we also made use of Egs. (1)-(2) and (5). V denotes the volume of the
turbid medium and the surface bounding the volume is denoted by S. The first two terms on
the right hand side (R.H.S.) of Eq.(9) are related directly to the source and the second term on
the R.H.S. of Eq.(9) arises because of the presence of the boundary. The solution to this
integro-differential equation is unique as long as there exists no non-trivial solutions to the
corresponding homogeneous integral equation. It is possible that for certain modulation
frequencies the resulting homogeneous integral equation may possess non-trivial solutions.
These frequencies will generally be complex and will correspond to resonance behavior of the
photon density waves. We shall not dwell with this singular case, but refer the reader to a
related paper on resonance theory by one of the authors [15]. Our Eq.(9) differs from the
corresponding equation used in reference {14], in which the boundary effect was ignored. The
treatment of the source contribution to the integral equation is also different.

For a homogeneous diffusing media, the integro-differential equation becomes

O(F,w) = 3, j S,(F, )G, (7,7, 0)d’F + iji(?’, ) NV'G,(r, 7, 0)d’F’
T, 4z,

4

1 — — 7 ’ — =7 A -7 ’
+Z;£(3aﬂsGd(r,r L)+ V'G, (7,7, 0) YD, @)dS’. 10)

#9231 - $15.00 US Received March 05, 1999; Revised April 09, 1999
(C) 1999 OSA 12 April 1999 / Vol. 4, No. 8/ OPTICS EXPRESS 235




Equations (9) and (10) are the basic equations of our paper. They are derived using the
diffusion approximation to photon transport and without any other approximations. Eq. (9) is
an intro-differential equation for the photon density wave and involves only the absorption
and transport scattering coefficients. Notice that Eq. (9) does not explicitly contain gradients
of light diffusion coefficient. Our derivation is exact and does not assume any condition on
the gradient of the light diffusion coefficient. As has been pointed out recently [17] neglect of
the gradient term leads to cross coupling between scattering and absorption images. Eq. (10)
describes the homogeneous or the background photon density field that includes the source
contributions (the first two terms on the R.H.S.), as well as contributions from the boundary
(the last term of the R.H.S.). Note that Eq. (10) contains only average values of the scattering
parameters and the surface integral includes the total field.

Eq. (10) relates the value of the diffuse photon density wave at any point inside the turbid
medium to the monopole and dipole moment of the source and to the photon density on the
surface bounding the medium. A surface integral equation for the boundary value of the
photon density is obtained if we take the point ¥ to be on the surface. This limiting operation
must be done carefully because the integrals involving the gradient of the Green's function are
not continuous when the interior point approaches a point on the surface. The other integrals
involving the Green's function however are continuous [21]. From an experimental point of
view, if the photon density on the surface surrounding the turbid medium is measured, then
one can use Eq. (10) to determine the diffuse photon density wave anywhere inside the
medium by simply carrying out the surface integrals in Eq. (10). If the value of this estimated
photon density matches that of the measured value at all points on the surface, then an
absence of tissue heterogeneity is indicated. In practice there will never be perfect
cancellation, but a larger difference indicates the presence of stronger heterogeneities inside
the tissue.

Another approximate way to evaluate the background field is to evaluate the surface
integrals in Eq. (10) iteratively. First ignore the third surface term involving the boundary
values of the photon density in Eq. (10) and use only the first two terms involving the source
terms to calculate the first order background field everywhere. Then update the value of the
background field by using the first order values in the last integral in Eq. (10). It is important
to devise a way to estimate a reasonable background field, because when this field is
subtracted from the total measured diffuse photon density field, then the remainder is the field
directly attributable to the presence of the heterogeneity.

We have already noted that unlike other integral formulations our integro-differential
equation does not contain an explicit term involving the gradient of the transport scattering
coefficient. This is important in the inverse problem where the absorption and transport
scattering heterogeneity are to be estimated from the measured values of the field. The
formalisms that include the gradient term will of necessity have to use a numerical estimate of
the gradient value. Such procedures may lead to numerical instabilities and numerical
artifacts. We next develop a 3D-slice image reconstruction technique based on the integro-
differential equation for the photon density, i.e. the Egs. (9) & (10).

3.Inversion algorithm for 3D-slice imaging
We make the assumption that the heterogeneities are weak and do not perturb the background

field substantially. Then we can approximate the photon density within the integral operator
with the background field. With this first order Born approximation, Eq. (9) becomes

o (7, 0) = " (7, ) - " (F, ) = - 1/4 [ (7) - B)®" (7, 0)G, (7, F, ) d*r
5y
1 /l,(;:')_ﬁ 7 L H =7 ’ =7 = 3 7
+— (L)WY F,ao)V'G,(F,r,w)d’r.
MJ( i IRAAR U (11)
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The superscript M implies measured field and the superscript P denotes the processed
(scattered) field values. In Eq.(12), we have used the identity

" (7, ) = 2o [ $,(7, )G, (7, 7, 0l F + = [ 8,(F.0) VG, (7. )T
4r 4z
# [ GaG, (.7 @)+ VO, (. F. @) i)@" (7, 0)dS” (12)
z N

The quantity ®" (7, w) often identified as the background field can be determined from the

knowledge of the source and the measured field at the boundary from Eq. (12).

Although our integro-differential equation is valid for arbitrary geometry, from now on
we shall restrict ourselves to the case of a plane parallel plate configuration. The plane
parallel plate is an accepted clinical diagnostic configuration for breast imaging. It offers the
possibility of compressing the breast to decrease its thickness for increased signal strength.
We also take the transverse dimension of the plate to be sufficiently larger than the plate
separation. Because of the negligibly small value of the field at the periphery of sufficiently
large plates, in practice the transverse plate extent can be taken to be infinite. In essence, Eq.

(11) is an integral equation for ££,(¥), and £, (F) with all the other variables such as the

background field, the Green's function and the background optical parameters either given or
estimated.

In the new integro-differential equation, we use the Weyl representation [22-23] of
Green's function

- T i , L L )
G(r,r,w)= Idpjdq%exp(zp(x—x)+zq(y—y )+zm|z—z |),

where m = ﬂkdz -p*—q*, with Im(m)>0.

The direction z is chosen perpendicular to the surface normal and the x and y directions are
chosen along the transverse directions. There is a singularity in the z direction as can be seen
from the absolute value operator in the exponent of the Weyl representation. This
representation is also known as the angular spectrum representation and is fundamental to the
theory and algorithm now commonly known as Diffraction tomography [24-25]. Diffraction
tomography was applied to far field coherent optical imaging systems, but recently this
technique has been extended to the near field diffuse photon density wave based imaging [26-
34]. With this representation of Green's function the integrals in x and y become convolution
integrals which turn into algebraic products in p, q space. Taking the two-dimensional

(13)

Fourier transform of Eq. (12) at the detector plane Z = Z, we find that

3 Zd - ’ g 7
& (p,q,2,,0) = [d7T,(p,q.7',@0)K(p,q,2, — 2, @)

s
(14)
Zd ~
+ [dZT,(p,q.7,@) kK(p,q,2, -2, @),
Zs
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where —
T, (7. 0) =~ 25 (u,(7) - 7, " (F, @), (15)
47
o)=L 1-20wH 7 o) (16)
4 D '
kgl ’ l .
and K(p,q,z, -7, 0) = %Cxp(lm(Zd —-2)). (17)

In Eqs.(14)-(17), k = Xp + yq + Zm is the wave vector and Z, Z, denote the positions of
the source and detector plates respectively. The caret () over functions signifies the Fourier
transform of a function. Several things are worth noting at this point. First, the absorption
coefficient contribution depends on a scalar function, while the transport scattering coefficient
depends on the product of two vectors. Second, the gradient of the diffuse photon density
wave interacts with the scattering heterogeneity, while the diffuse photon density wave
interacts with the absorption heterogeneity. Finally, the inverse of the transport scattering

C
e
s

Eq. (14) is a very simple looking equation, but in fact a lot of physics is hidden. The

coefficient has been explicitly replaced by the photon diffusion coefficient D=

Fourier transform of the so-called tumor functions, 7, and T, which are products of the

scattering parameters and the background field in real space, will be convolution integrals in
the Fourier space. This convolution in the spatial frequency space between the tumor
parameters and the background field couples temporal frequency, @ with spatial frequency
(p.q). This implies that the use of a set of modulation frequencies does not in any easy manner
let us solve for the spatial Fourier amplitudes of the tumor functions. This coupling is
eliminated if the background field is spatially in the form of a plane wave rather than a
spherical wave. The usefulness of plane wave sources is well known in the field of diffraction
tomography [24].

We will use a series of plane waves whose central modulation frequencies are stepped to

span some frequency bandwidth. For the plane wave case the tumor functions, 7, T, can

be written as a product of two functions. One function, f, or fj, contains information about

the heterogeneities and depends upon (p, ¢, z) and the other function depends upon the
background plane waves and modulation frequency (see Eq. (18) below). One can then utilize
this temporal frequency bandwidth to obtain resolution in the longitudinal (z) direction. The
key advantage of using the series of stepped central modulation frequencies is that the
detection system is still narrow band and one can use maximum permissible signal strength at
all discrete frequencies. We plan to publish in a later paper the details of this technique with
simulated data, but here we point out the salient features of the method. For the plane wave
case we find

T,(p.q.z,@)=1t,(p,q,2)(®" exp( +imz) + ®~ exp( —imy2)},

>

T.(p.g.2,@)=1,(p,q,2){k,T @ exp( +im z)+k,"®~ exp( ~imy2)},
. 3
t,(p,q,2) = 4—7;[/1a0”(p - DP)O0(q—4qy) = 1, (P~ Pyq— 9]
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) 1 =
ip(p.q:2) = 7=[D(p - Po)9(q—qy) = D(p = po 4~ q0)],

—

L L
and gt = gy 4 5, +img, kg =dpy+ $g, = tmg. (18)

Here p, = Re(k,)cos(&)cos(d), g, = Re(k,)cos(d)sin(@) where & is the angle

the plane wave makes with respect to the z direction, and ¢ is the corresponding azimuthal
angle. Care must be exercised in the angle interpretations as we are dealing with attenuating

plane waves. For the case of a normal incidence, p, =0 and g, =0. The parameter

my = \/ kd2 - po2 - P02 with Im(m,) > 0.The general mode structure of the

background plane wave for the parallel plate slab geometry can be shown from the solution of
the homogeneous equation ( Eq. (10)) to be a sum of both forward and backward propagating
waves [33]

@, (x,y,7, @) = D* exp(ipyx + iqyy +imyz) + ®~ exp(ipyx +ig,y —imyz). (19)

Here, CD+, and @ are complex constants obtained from solution or measurements as
discussed earlier in the section on the background field.
We approximate the integration in Eq. (14) in the z variable by means of a sum over N

slices between the parallel plates (the slice thickness can be different and is denoted by Az j

with j ranging from 1: N), and use Eqgs. (15)-(19) to obtain the following result

— N ~ A N A
(' 0,) =Y (L) fi (2. @) + iy () oz for j=1:2N, (20)

i=]

where

f] (z;,,@;) = Az, (@ exp(+im,z,) + P~ exp(—imozi)}le(zd -7;, ),
fz(Zt’ @;) =—Az{(pp, + g9, + mmg )@ exp(+imyz;) +

(PP, + qq, — mm, )P~ exp(—imyz;) }k(zd -z, ). (21)

Here, we suppressed the (p,q) arguments for the sake of brevity. Eq. (20) provides 2N linearly
independent complex equations that can be solved for the two dimensional Fourier transform
of the absorption and scattering coefficients at the N selected slice positions in the z direction.
This can be seen more clearly when Eq. (20) is written in a matrix form

D=

(S
15>

(22)

Where @ is the vector of 2N dimension consisting of the measurements of the processed

(scattered) field at the 2N modulation frequencies, f is a 2NX2N matrix consisting of two
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INXN matrices f,, and f, defined in Eqs. (21a)(21b). Eq. (22) can be solved by direct

matrix inversion as shown below or iteratively by following methods such as SIRT, ART [13]

. i consists of the sum of the two N dimensional vectors fa and fD.

-}y @ @)

;‘t in Eq. (23) is the two-dimensional Fourier transform of the absorption and scattering

coefficients at each of the N number of slices in the direction normal to the plates (the z
direction). The values of the scattering coefficients in the direction transverse to the surface
normal (the x and y directions) are obtained by applying the two-dimensional inverse Fourier
transform, i.e.

I=+>

oo oo

105,3,2) =5 | [dpda(F(p. )" (p.g)exp(ipx—igy) for i=1:N
- (24)

For the Breast imaging case, Eq. (24) provides one with 3D-slice images of the absorption
and scattering coefficients at the selected "virtual" slice positions in the interior of the breast
compressed between the two plates. These images may be reconstructed with light of
different wavelengths within the near- infrared window. Such measurements improve the
usefulness of nearfield optical imaging modality employing diffuse photon density waves.

4.Conclusion

We presented a rigorous derivation of a new integro-differential equation for the diffuse
photon density wave in an inhomogeneous bounded turbid medium within the diffusion
approximation. The resulting equation contains only the absorption and scattering coefficients
and does not include gradients of the light diffusion coefficient. We also derived a novel
surface integral equation for the diffuse photon density waves for the case of a bounded
homogeneous turbid medium. We used the theory to develop a detailed imaging algorithm
that provides one with 3D-slice images of the absorption and scattering coefficients of tissue
(breast) that is compressed between two parallel plates. We believe this algorithm will be
useful in increasing the specificity of the near infrared optical imaging modality. Our
algorithm being based on inhomogeneous wave equation of the Helmholtz type may also be
applicable to other imaging modalities such as ultrasound.

Acknowledgements

We gratefully acknowledge useful conversations with Britton Chance, Joe Culver, Leonid
Zubkov, Monica Holboke, Turgut Durduran, Xingde Li, Regine Choe. We acknowledge
partial support from US Army RO DAMDI7-97-1-7272 and NIH 1-RO1-CA75124-01

grants respectively.

#9231 - $15.00 US Received March 05, 1999; Revised April 09, 1999
(C) 1999 OSA 12 April 1999 / Vol. 4, No. 8 / OPTICS EXPRESS 240




Parallel three-dimensional diffuse optical tomography

M. J. Holboke and A. G. Yodh
Dept. of Physics and Astrononty, University of Pennsylvania, 209 S. 33" Street, Philadelphia, PA 19104
Phone: (215)898-5150, Fax: (215)898-2010, E-mail: mholboke @physics.upenn.edu

Abstract: Three-dimensional diffuse optical tomography is a computationally intensive
procedure. An iterative perturbative algorithm is followed and parallelized. The results show that
three-dimensional images can be reconstructed on realistic time scales compared to the
synchronous approach.

©1999 Optical Society of America
OCIS codes: (100.6890) Three-dimensional image processing; (170.6960) Tomography; (170.5280) Photon migration

1. Introduction

Most Diffuse Optical Tomography (DOT) has occurred in 2-D. In the best of these cases, a cylindrical geometry
was employed to reduce the dimensionality of the problem [1,2]. In fact, only recently have full 3-D reconstructions
been accomplished and compared to 2-D [3,4]; not surprisingly, the 3-D images were superior. Additionally, in any
clinical setting the problem is necessarily 3-D. Therefore, we are convinced that 3-D reconstruction is the best
approach for optimal image fidelity in a clinical setting.

The main barriers for 3-D reconstruction are memory requirements and computational processing time. Arridge
and Schweiger have presented an algorithm that reduces memory requirements significantly [5]. Unfortunately, the
computational processing time was still significant. Subsequently, they recently presented a 3-d segmented
reconstruction using parallel processing [4]. In this application they parallelized the forward problem matrix solver
and received a factor of four speed-up when using eight processors. While, this is promising it is still necessary to
speed up the reconstruction time as much as possible in order to make 3-d clinical imaging a reality. Therefore, we
have developed a parallel 3-d DOT algorithm that parallelizes the algorithm itself and plans for expanding the
parallelization are underway.

2. Methods

A variety of methods have been developed for (DOT). These include fitting to an analytic solution [6-8],
backprojection method [9-11], diffraction tomography in k-space [12-16], perturbation approach [17-23], elliptic
systems method (ESM) [24,25], and direct method [26]. Each method has advantages and drawbacks, but the only
method to date that has been utilized in full 3-D simultaneous reconstructions of absorption and scattering
coefficients for complicated geometries and boundary conditions is the perturbation approach. Within the
perturbation approach there are a couple of methods to solving the forward problem and determining the Jacobian
[for a review see 27]. Additionally, there are a variety of methods for solving the inverse problem [2,5,27-31].

Our algorithm is based on an iterative perturbative approach that uses the explicit adjoint formulation for the
inverse problem and parallel processing in master-slave style (fig. 1). This requires solving the forward problem for
each source (NS=number of sources), solving the adjoint problem for each detector (ND=number of detectors), and
solving the inverse problem ([NMxNV], NM=number of measurements, NV=number of voxels). In the first step
each node has its own set of arrays and variables that are initialized. During the second step the master sends out the
optical properties, which in the first iteration are just the background values. In the third step, the slaves calculate
the solutions to the forward problem; consequently NS slaves are used in this step. The solution vectors are then
returned to the master and at this point the master checks for convergence. If convergence has not be achieved then
the slaves calculate the solutions to the Green’s function resulting in ND slaves being utilized. Again the solution
vectors are returned to the master and the Jacobian is determined. Next the master solves the inverse problem by
using a spatially variant regularized conjugate gradient optimization method [2,21]. Finally, the optical properties
are updated on the master and the algorithm repeats until convergence has been achieved.

The outlined approach utilizing parallel processing results in many gains. First we are able to calculate our
forward solutions simultaneously. Therefore, what would normally take NS x Atgrard (Atforward = the time of one
forward solve) is now {NS/Min(NS, NP (number of processors))} X Atgwaa plus some small amount of time for
communication. Similarly, for the Green’s function, processing is reduced from ND X Atgen (Atgreen = the time of
one Green’s function solve) to {ND/Min(ND, NP (number of processors))} X Atgeen. If NP>NS,ND then our matrix
solve time is reduced by ~ NS+ND.
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Fig. 1: Algorithm for full 3-D reconstruction.
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Fig. 2: Maps of Ap, (left) and Ay’ (right) actual and reconstructed.

3. Results

A full 3-D parallel reconstruction based on numerically generated frequency domain data with 0.1% noise in
amplitude and 0.1 degree noise in phase is demonstrated. The size of the domain was 20cmx10cmx4cm and the grid
was 81x41x33, equivalent to 0.25cmx0.25c¢cmx0.125cm resolution. The size of the inverse grid was 19x9x4,
equivalent to lcm voxels and 1368 unknowns. There are five sources with the same frequency modulation
(140MHz) and 81 detectors, equivalent to 810 measurements. The source locations are (0,0,0), (-1,1,0), (1,1,0), (-1,
1,0), and (1,-1,0). The detector locations are a grid from -2 to 2 in x and y every 0.5cm. There are two lcm cube
heterogeneities located at (0,1,1.5) and (1 -1,2.5). The optical properties are u,=0. OScm and pg'=8. Ocm for the
background, p,=0.10cm™ and u,’=6. Ocm™ for the cube at (0,1,1.5), and u,=0.08cm™ and p,’=10. Ocm’ for the cube
at (1,-1,2.5). The source strength, although it is known here, is generally unknown in clinical settings. Therefore, in
order to remove the source term dependence background measurements are made at the detector locations (®y°); the
corresponding calculated values are the first forward solutions (®c°). These values are then divided out of the
inverse problem for each measurement (i.e. ®y=Pu/Pn°, (DC—Q)C/CDC ). The 3-D reconstruction is shown in Fig. 2
along with the actual values. Convergence was achieved when x changed less then O 1%, this occurred by the 67th
iteration. The reconstructed cube at (0,1,1.5) had ua—0.08206cm and L ’=5.9802cm™ and the cube at (1,-1,2.5) had
1,=0.07721cm™ and '=12.2638cm™. The total time was 5.6hrs on 20nodes (i.e. 1 master and 19 slaves), while
synchronously it took 20.8hrs.
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